
Stack smashing analysis by abstract interpretation of
binary code

Clément Ballabriga 1, Julien Forget 1, Guillaume Person 1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France
firstname.lastname@univ-lille.fr

1/18

Introduction

Outline

1 Introduction

2 Relational abstract interpretation of binary code

3 Stack smashing analysis

4 Conclusion

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 2 / 18 �

Introduction

Stack smashing: vulnerable program

Example

#d e f i n e MAX 12
v o i d f oo (char ∗ bar)
{

char c [MAX] ;
s t r c p y (c , bar) ; // un sa f e

}
i n t main (i n t argc , char ∗∗ a rgv)
{

f oo (a rgv [1]) ;
r e t u r n 0 ;

}

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 3 / 18 �

Introduction

Stack smashing: exploit

Figure: foo(”AAAAAAAAAAAAAAAAAAAA\x08\x35\xC0\x80”,24)

(Source Wikipedia)
Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 4 / 18 �

Introduction

Our approach: static analysis of binary code

We analyze the binary code:

Pros
Can analyze closed-source programs;
No assumptions required about the compiler;

Cons
Missing information:

No types;
No variables;

⇒ Program accesses data locations: registers, memory addresses;
⇒ Not your classic Abstract Interpretation;

Must handle different CPU instruction sets;

⇒ More tedious tooling.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 5 / 18 �

Introduction

Our contribution

1 Abstract Interpretation:

Of binary code;
With a relational abstract domain;

⇒ Supports statically unknown addresses.

2 AI-based analysis to prove the absence of return address corruption:

Track function return addresses in the program abstract state;
Fully-automated analysis.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 6 / 18 �

Relational abstract interpretation of binary code

Outline

1 Introduction

2 Relational abstract interpretation of binary code

3 Stack smashing analysis

4 Conclusion

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 7 / 18 �

Relational abstract interpretation of binary code

Reminder on abstract interpretation

Example

i n t f (i n t s) {
i n t x=4,y=3, s , o ;

i f (s)
o=x+y ;

e l s e o=x−y ;
// Sta t e he r e ?
r e t u r n o ;

}

Two possible concrete states at end of function:
{x = 4, y = 3, s = 0, o = 1}, {x = 4, y = 3, s 6= 0, o = 7}
A valid abstract state: {x = 4, y = 3, 1 ≤ o ≤ 7}
Properties proved on abstract state hold for any concrete state;

e.g. here we can prove that o > 0 at end of function.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 8 / 18 �

Relational abstract interpretation of binary code

POLYMAP, an abstract domain for binary code

With POLYMAP, we represent an abstract state as (〈c1, . . . , cn〉,R], ∗]):

State variables (a.k.a dimensions) are added/removed as the analysis
progresses;

〈c1, . . . , cn〉: constrains values of data locations (polyhedron);

R], register mapping: maps polyhedra variables to registers;

∗], memory mapping: tracks addresses 7→ values relationships.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 9 / 18 �

Relational abstract interpretation of binary code

Tracking register contents

Example

(0)
SET r1 , #1 (1)
ADD r1 , r1 , #1 (2)

(0): (>, ∅, ∅)
(1): (〈x1 = 1〉, {r1 : x1}, ∅)
(2): (〈x1 = 1, x2 = x1 + 1〉, {r1 : x2}, ∅)
⇒ We can remove x1: (〈x2 = 2〉, {r1 : x2}, ∅).

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 10 / 18 �

Relational abstract interpretation of binary code

Tracking memory contents

Example

SET r3 , #42 (1)
STORE r3 , [sp + #4] (2)

(1) (〈x1 = 42〉, {r3 : x1, sp : x2}, ∅)
(2) (〈x1 = 42, x3 = x2 + 4, x4 = x1〉, {r3 : x1, sp : x2}, {x3 : x4})
⇒ ∗(x3) = x4
⇒ Address sp + 4 contains value 42.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 11 / 18 �

Relational abstract interpretation of binary code

Abastract interpretation procedure: main difficulties

Aliasing: two different variables corresponding to the same address

Impacts the interpretation of LOAD and STORE;

Unification: 2 different variables in 2 different states corresponding
to the same location:

When joining the states of two program branches, unify their mappings
before joining the constraints.

For details

C. Ballabriga, J. Forget, L. Gonnord, G. Lipari, and J. Ruiz. ”Static
analysis of binary code with memory indirections using polyhedra.” In
VMCAI’19.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 12 / 18 �

Stack smashing analysis

Outline

1 Introduction

2 Relational abstract interpretation of binary code

3 Stack smashing analysis

4 Conclusion

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 13 / 18 �

Stack smashing analysis

Overview

Track more information during AI:

Identify variables corresponding to return addresses;

Track such variables for functions of the current call stack;

Compare constraints at function call vs at function return.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 14 / 18 �

Stack smashing analysis

Tracking return addresses

Our tool targets ARM:

Return addresses are stored in the link register (LR);

We consider:

Variable lrcall mapped to LR at function call;
Variable lrret mapped to LR at function return;
p the polyhedron at function return;

⇒ Check that p v� 〈lrcall = lrret〉.
Abstract state stores a stack of live return address variables;

⇒ Somehow, an abstract shadow stack.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 15 / 18 �

Stack smashing analysis

Safe program

Example

#d e f i n e MAX 12
v o i d f oo (char ∗bar , i n t n)
{

char c [MAX] ;
i f (n<MAX)

s t r n c p y (c , bar , n) ; // s a f e
}
i n t main (i n t argc , char ∗∗ a rgv)
{

f oo (a rgv [1] , a t o i (a rgv [2])) ;
r e t u r n 0 ;

}

Our tool Polymalys1 proves the absence of stack smashing;
The same program with strcpy instead cannot be proved safe.

1https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 16 / 18 �

https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

Conclusion

Outline

1 Introduction

2 Relational abstract interpretation of binary code

3 Stack smashing analysis

4 Conclusion

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 17 / 18 �

Conclusion

Summary

Abstract interpretation of binary code;

Relevant memory addresses discovered during analysis;
Supports statically unknown memory addresses;

Stack smashing detection;

Proves the absence of vulnerabilities
Fully automated;

Limitations:

False negatives: invulnerable programs deemed vulnerable;
Scalability: AI with polyhedra=high complexity.

Julien Forget (CRIStAL, Lille) Stack smashing analysis by abstract interpretation of binary code � 18 / 18 �

	Introduction
	Relational abstract interpretation of binary code
	Stack smashing analysis
	Conclusion

