
Journées 2022 du GT ”Méthodes
Formelles pour la Sécurité”, GdR

Sécurité Informatique

21-23 Mar 2022
Fréjus

France

Table of contents

A CompCert Backend with Symbolic Encryption, Torrini Paolo [et al.] 1

A Formalization of the Proof of Correctness of a Number-Theoretic Transform
in the Context of the Hakyber Cryptographic Primitive, Séré Antoine [et al.] 4

A General Framework for Supervisory Control of Opacity, Souid Nour [et al.] 5

A comprehensive security analysis of the Belenios protocol and more, Debant
Alexandre 6

Analyse de contre-mesures dans le cadre d’attaques multiples, Boespflug Eti-
enne 8

Assessing bug replicability for more security-minded bug finding, Girol Guil-
laume 10

CV2EC: Getting the Best of Two Worlds, Blanchet Bruno [et al.] 12

Efficient Symbolic Algorithms for Software Verification Against Fault At-
tacks, Ducousso Soline [et al.] 13

End-to-end enforcement of fine-grained ”cryptographic” constant-time poli-
cies, Ammanaghatta Shivakumar Basavesh [et al.] 15

Equational Proofs for Distributed Cryptographic Protocols, Gancher Joshua [et
al.] 16

Formal Verification Challenges on High-Speed Cryptographic Implementa-

1

tions, Quaresma Miguel [et al.] 18

Formal analysis of LAKE-EDHOC, Racouchot Mäıwenn [et al.] 20

Formal analysis of security issues in dynamic virtual networks, Le Scornet
Pierre 22

Improving Static Analysis Precision by Minimal Program Refinement, M
Charles Babu [et al.] 24

Learning and Knowledge for Anomaly Detection, Chevalier Yannick 26

Mechanized Proofs of Adversarial Complexity and Application to Universal
Composability, Koutsos Adrien [et al.] 27

Model Checking of Vulnerabilities in SmartContracts: A Solidity-to-CPN
Approach Extended Abstract, Garfatta Ikram [et al.] 29

Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of
Service Attacks, Parolini Francesco [et al.] 31

Stack smashing analysis by abstract interpretation of binary code, Ballabriga
Clément [et al.] 32

Structured Leakage and Applications to Cryptographic Constant-Time and
Cost, Barthe Gilles [et al.] 33

Support for Detecting Integer Overflow Vulnerability, Kissi Salim Yahia [et
al.] 34

Systematic, automated discovery of security protocol attacks that exploit
weaknesses in common hash functions, Jacomme Charlie 36

Type-Directed Program Transformation for Constant-Time Enforcement, Besson
Frédéric [et al.] 37

Verifying Low-Level, Concurrent Programs with Steel, Fromherz Aymeric 39

2

Verifying Redundant-Check Based Countermeasures: A Case Study, Martin
Thibault [et al.] 41

Vérification des mécanismes de sécurité des navigateurs Web, Farinier Ben-
jamin [et al.] 43

List of sponsors 44

Author Index 44

1

A CompCert Backend with Symbolic Encryption

PAOLO TORRINI, INRIA, Grenoble, France
SYLVAIN BOULMÉ, Verimag, Grenoble, France

Binary encryption can be used to strengthen a verified compilation toolchain,
in order to protect executable code from malware attacks. We present In-
trinSec, a C backend that extends RISC-V with binary encryption and our
work on its formalization and verification as a CompCert backend.

Attacks against computer systems can take advantage of software
vulnerabilities such as buffer overflows in order to inject malicious
code or divert control-flow. Protection against them typically in-
volves ensuring integrity of executable code and stack data. Integrity
can then be used to ensure higher-level properties of system be-
haviour, such as those represented by the control-flow directed
graph (CFG) and non-interference. Various techniques have been
introduced to ensure integrity, including mitigation tools, type-safe
languages, the enforcement of CFG-based control-flow integrity [1]
and encryption.

Binary code encryption can be used to safe-guard code and data
integrity. Unlike other approaches, it generally requires the deploy-
ment of specialized hardware to execute the encrypted code. In
[2, 4], integrity of C program execution by authenticated encryption
of instructions is ensured by compilers that have been co-developed
with RISC processors (the latter used as prototype for proprietary
CEA hardware developed within the NanoTrust project). The en-
cryption of binary programs is carried out at compile-time by the
trusted compiler. Their decryption is achieved on the fly, at runtime,
by the processor itself. The processor supports single-instruction
decryption (it executes cyphertext by decrypting each instruction
just before executing it).

1 INTRINSEC
The IntrinSec assembly, following the design of [4], extends RISC-V
32bits with additional registers and instructions, for control-flow
monitoring (CFM), which appear in blue on Fig. 1. The compiler
translates source code to encrypted binary code (EBC) after link-
ing, producing cyphertext which is executable relying on single-
instruction decryption. Encryption is based on stream cyphers (finite
ones), each associated with a code block (cryptographic block) that
has a single entry point. Instructions in the block are sequentially as-
sociated with CFM tokens (which are masks) [2]. The assembly code
is instrumented at compile-time in order to update the CFM tokens
accordingly to control-flow branch. A higher level of protection can
be achieved by adding encryption of the whole program, associ-
ated with a stronger secret key, and by introducing data encryption,
though these aspects will not be further discussed here.

Verified compilation ensures source-level behaviour preservation,
i.e. that the target assembly code always behaves compatibly with
the source code semantics. The CompCert C compiler [3] formally
developed and verified in Coq is based on a chain of verified compi-
lation passes between intermediate languages down to Asm. Each

Authors’ addresses: Paolo Torrini, INRIA, Grenoble, France, Paolo.Torrini@inria.fr;
Sylvain Boulmé, Verimag, Grenoble, France, Sylvain.Boulme@univ-grenoble-alpes.fr.

int fact(int n){
if (n <= 1) return 1;
return n*fact(n-1);

}

ecr.enter
fact:
mv x30, sp
addi sp, sp, -16
sw x30, 0(sp)
sw ra, 4(sp)
ecr.sw emr, 8(sp)
sw x8, 12(sp)
mv x8, ra0
ecr.lui emb,%hi(.L100)
ecr.addi emb, emb,%lo(.L100)
addi x31, x0, 1
blt x31, x8, .L100

addi ra0, x0, 1
ecr.lui emb,%hi(.L101)
ecr.addi emb, emb,%lo(.L101)
j .L101

.L100:
addi ra0, x8, -1
ecr.lui emb,%hi(fact)
ecr.addi emb, emb,%lo(fact)
call fact
mul ra0, x8, ra0

.L101:
lw x8, 12(sp)
lw ra, 4(sp)
ecr.lw emb, 8(sp)
addi sp, sp, 16
jr ra

Fig. 1. IntrinSec assembly produced by our version of CompCert

language is characterized in terms of executable semantics, and
they all share a memory model which ensures separation between
mutable data and code associated with functions. At the assembly
level, a function is associated with a block and each instruction in
the block with an offset. CompCert can target different assembly
backends including RISC-V [5].

Here we discuss the formalization and verification of the IntrinSec
CompCert 3.8 backend1. In order to deal with cryptographic tokens,
we extend the RISC-V formal model with the specific instructions
and registers, and we extend the memory state with a correspond-
ingly modified notion of stack frame. This instrumented version of
CompCert RISC-V constitutes the executable model of the IntrinSec
backend. As CompCert verified compilation stops at the assembly
code, the formal verification of our compiler can only consider an
abstract model. We extend the IntrinSec executable model with an
axiomatic model of link-time encryption and run-time decryption,
basically corresponding to a symbolic encryption model of stream
cyphers in Coq. Encryption is represented as a function that de-
pends on a cryptographic block and an offset, returning the CFM
mask of the corresponding instruction.
Our basic encryption model assumes that each function block,

hence each function, is associated with a stream cypher. The first
instruction in the block is associated with the initial mask of the
stream (entry mask generated by the “ecr.enter” directive in the
concrete assembly). Further instructions in the code are then se-
quentially associated with further masks in the stream. In order to
decrypt an instruction, the processor needs to be given the correct
mask: an incorrect mask is considered as the result of a control-flow

1https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-intrinsec.

2

• P. Torrini, S. Boulmeé

attack, and the execution aborts. The processor fetches this mask
from dedicated mask registers: MSK_CNT (for the mask associated
with the next instruction address, given by the program counter
PC), emr—called MSK_RTN in our Coq model—(for the mask associated
with the return address, given by RA), and emb—called MSK_BRN in
Coq—(for the mask associated to the next branching address). On
each non-branching instruction, MSK_CNT is implicitly updated (with
the symbolic encryption). For jumps, the correct mask (stored in
the memory at conventional locations for indirect jumps), must
be loaded by the program to emb by means of the special “ecr.”
instructions (see Fig. 1).
Asm programs in CompCert are obtained from a chain of inter-

mediate languages inclusive of Mach and Linear [3]. This makes it
possible to take advantage of the Mach semantics in the verification
of control-flow properties, in particular with respect to function
entry points. A minor revision of the semantics preservation proof
between Mach and Linear is needed in connection with stackframe
operations. A more significant revision is needed for the semantics
preservation proof from Mach to Asm. The verification invariant
needed for IntrinSec strengthens RISC-V source-level behaviour
preservation with a symbolic encryption invariant, ensuring that an
instruction can be executed only if the mask which becomes avail-
able for its decryption matches the one that has been used to encrypt
it (expressed as a relation between PC and MSK_CNT). The proof con-
sists in a refactoring of the analogous one for Mach and RISC-V, and
it involves a significant revision of the notion of straightline code,
which is essentially meant to capture code without jumps.

From the point of view of symbolic encryption, under the assump-
tion that masks cannot be guessed and encryption cannot be broken,
our model can guarantee code integrity, i.e. the fact that it is not
possible to make the processor execute assembly code that has been
altered or introduced by the attacker. This protection extends at
least partially to control flow, especially with respect to function
calls (i.e. the forward edges in the CFG). In the case of direct jumps,
the destination address is protected by mask encryption. In the case
of indirect ones, the mask to decrypt the address is associated to
the function entry point. This is safe, under the assumption that
the conventional location at which the mask is stored cannot be
guessed. Moreover, under the assumption that the mask increment
function cannot be guessed, this suffices to guarantee that jumping
into the middle of a function is not possible. Concerning the return
addresses (i.e. the backward edges in the CFG), the problem is more
delicate as both the return address and the associated return mask
are stored as data on the stack. Therefore, in order to protect the
backward edges, data encryption is needed.

2 RESETTING CRYPTO-BLOCKS
The basic version of IntrinSec assumes that cryptographic blocks
coincide with function blocks. This means that each stream cypher
has at least the same size of the block it is associated with. However,
this is a rather artificial constraint and may be undesirable when
function blocks are very large. It seems then appropriate to introduce
an independent notion of crytographic block. Operationally, this
can be done by using a special label to mark the start of a new block,
and a reset instruction to initialize the stream cypher. Although

the semantics of reset seems easy, this instruction complicates the
refactoring of the proofs, as the encryption function comes to depend
on the whole function code (labels may trigger a reset), and this
makes the definition of the encryption invariant more complex.

The CompCert inductive definition of “straightline code” is seman-
tic (i.e. bounding the PC shift between two sequential instructions).
This definition does not depend on any instruction set, and there-
fore can be used for different backends. In general, this notion is
slightly different from a syntactical one which could be obtained by
checking for jump instructions in the function code (a jump which
advances the counter by one does not break the semantic definition).
In IntrinSec, however, this notion has to be modified, as we need
to keep into account the MSK_CNT update. With the reset instruction,
this complicates refactoring. Thus, we switched to a syntactic notion
of straightline code, excluding jump and reset.

3 PSEUDO-ASM
In order to mitigate the refactoring problem which may arise when
we enrich the Asm back-end (as the reset example shows), we want
to split two main aspects that are dealt with in the translation from
Mach to Asm. One is the shift from the structural character of
the stack representation in Mach to the memory-embedded one of
Asm. The other one is the shift from the Mach instruction set to
the Asm one. We then introduce an intermediate language, which
we call PseudoAsm, that has the same instruction set as Mach but
has PC and RA registers and a memory-embedded stack similar to
the Asm one. Not only we can factor the translation from Mach
to Asm into two distinct ones, one from Mach to PseudoAsm and
the other one from PseudoAsm to Asm. We can also define an
inverse translation from PseudoAsm to Mach, under a state match
relation that restricts Mach states to those with a stack that can be
faithfully embedded in memory. An analogous restriction can be
introduced in the translations from Linear to Mach, and from Mach
to PseudoAsm. The advantage of this approach (currently work in
progress) is not only to achieve better modularity, but also to make
it possible to express security properties which can be preserved
down to PseudoAsm, thus localizing their possible break-down to
the shift from the Mach instruction set to the Asm one.

ACKNOWLEDGMENTS
This work has been partially supported by the IRT Nanoelec (ANR-
10-AIRT-05), funded by the French national program “Investisse-
ment d’Avenir”.
We also wish to thank Olivier Savry, Thomas Hiscock, Marie-

Laure Potet and David Monniaux for their helpful collaboration.

REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. 2005. A Theory of Secure Control

Flow. In ICFEM (LNCS), Vol. 3785. Springer, 111–124.
[2] T. Hiscock, O. Savry, and L. Goubin. 2019. Lightweight instruction-level encryption

for embedded processors using stream ciphers. Microprocessors and Microsystems
64 (2019), 43–52.

[3] X. Leroy, S. Blazy, Z. Dargaye, Jourdan J. H., M. Schmidt, B. Schommer, and J. B.
Tristan. 2020. The CompCert C Compiler, Version 3.8. http://compcert.inria.fr/
compcert-C.html

[4] O. Savry, M. El-Majihi, and T. Hiscock. 2020. Confidaent: Control FLow protection
with Instruction and Data Authenticated Encryption. In DSD 2020. IEEE, 246–253.

[5] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi. 2014. The RISC-V instruction
set manual (TR EECS-2014-54). Univ. of Calif. Vol. 26.

3

A Formalization of the Proof of Correctness of a Number-Theoretic
Transform in the Context of the Hakyber Cryptographic Primitive

Antoine Séré
Institut Polytechnique de Paris

antoine.sere@polytechnique.edu

Pierre-Yves Strub
Institut Polytechnique de Paris

pierre-yves.strub@polytechnique.edu

Context
Kyber[4] is a key-encapsulation mechanism (KEM) based on the hardness of the Module-LWE problem. It is part of the
package CRYSTALS, submitted to the NIST Post-Quantum Cryptography project, and is currently a round 3 finalist in it’s
category.

A formally verified implementation of Kyber, called Hakyber, is currently in development. Hakyber is written in Jasmin[1],
and formally verified in EasyCrypt[3].

EasyCrypt has already been used to prove the correction of an implementation of ChaCha20-Poly1305[2] in Jasmin. This
proof consists in first proving the correction of a reference implementation of Poly1305, and then by game-hopping : proving
the equivalence between gradually more optimized implementations.

Hakyber
Hakyber works over the base ring Rq = Z3329[X]/(X256 + 1). Elements of this ring are represented as arrays containing the
Montgomery representation of their coefficients, stored in reversed bit order.

The multiplication is implemented using a variant of the number-theoretic transform (NTT). This implementation contains
several optimizations rendered possible by the representation of Rq. Notably the final value of one of the loop indexes is
reused outside of the loop body.

The correctness of the implementation of the NTT in Hakyber is thus an important part of the correction proof included
in Hakyber. Hakyber also is formally proven in EasyCrypt to be IND-CPA and IND-CCA2 secure.

Contributions
We showed the correction of the NTT implementation in EasyCrypt using game-hopping, notably by proving the equivalence
of an naive implementation with another working on the reverse bit order, and between the most optimized version, and one
less optimized that does not reuse the loop indexes outside their associated loops.

The proof we produced involves more complex mathematical objects than the proof of correction of Poly1305, namely
quotients of polynomials over a finite field. It shows an optimized NTT implementation corresponds to the NTT in Rq, and
that the multiplication in Rq can be defined using the NTT by the formula: NTT−1(NTT(f) ◦NTT(g)) = f × g.

We also added to the EasyCrypt standard library relevant lemmas to reason about reverse bit order. We also added
lemmas to reason about particular forms of while loops commonly used, namely for loops, where the integer variables used
in the while condition are only changed by the end of the loop body, by adding, multiplying or dividing by a constant. These
lemmas allow reasoning easily about these special cases in EasyCrypt’s HL, pHL and pRHL logics.

We also started to extend EasyCrypt with type classes, which would allow to more easily manipulate complex mathe-
matical objects in EasyCrypt in other proofs.

References
[1] José Bacelar Almeida et al. “Jasmin: High-Assurance and High-Speed Cryptography”. In: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by
Bhavani M. Thuraisingham et al. ACM, 2017, pp. 1807–1823. isbn: 978-1-4503-4946-8. doi: 10.1145/3133956.3134078. url:
https://doi.org/10.1145/3133956.3134078.

[2] José Bacelar Almeida et al. “The Last Mile: High-Assurance and High-Speed Cryptographic Implementations”. In: 2020 IEEE
Symposium on Security and Privacy (SP). 2020, pp. 965–982. doi: 10.1109/SP40000.2020.00028.

[3] Gilles Barthe et al. “EasyCrypt: A Tutorial”. In: Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial
Lectures. Ed. by Alessandro Aldini, Javier López, and Fabio Martinelli. Vol. 8604. Lecture Notes in Computer Science. Springer,
2013, pp. 146–166. isbn: 978-3-319-10081-4. doi: 10.1007/978-3-319-10082-1_6. url: https://doi.org/10.1007/978-3-319-
10082-1_6.

[4] Joppe Bos et al. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634.
https://ia.cr/2017/634. 2017.

4

Information flow is a class of security properties that characterizes the way information flows
between different entities of a system. Opacity is one of these properties that offers a
general framework allowing to specify a wide range of security properties and it
characterizes the ability of a system to keep a secret information hidden from an attacker.

Considering a predicate on the system behavior, this predicate is said to be opaque if for
every behavior satisfying the considered predicate, there is (at least) another behavior, not
satisfying the predicate and that both of them are indistinguishable by the attacker .

Enforcing the opacity property has been studied within the framework of Supervisory Control
Theory (SCT). The objective is to synthesize a supervisor that restricts the behavior of the
system by disabling events that lead to secret divulgation and hence, opacity leakage. A key
concept in Supervisory Control is permissiveness. Indeed, a supervisor has to enable the
maximal number of events and is hence called the maximal supervisor.

We assume that we have a Discrete Event System G, that is partially observed by an
attacker. Our work investigates the problem of enforcing the opacity of G from the
Supervisory Control perspective. We suggest a novel methodology to synthesize a maximal
supervisor that restricts the behavior of the considered system in the general case without
any hypothesis on the relationship between the attacker and the supervisor’s observations.
Moreover, the presented approach has been implemented in C/C++ providing a simple
framework to verify and enforce the opacity property.

Verifying the opacity of a system requires exploring its state space which leads to the
combinatorial explosion. Instead of exploring all the states of a system, we regroup them into
groups of states called "aggregates" and are encoded using Binary Decision Diagram
techniques. The obtained graph is called Symbolic Observation Graph (SOG) and has been
used to verify the opacity of Discrete Event Systems. The SOG is built based on the
observation of both the attacker and the supervisor. The supervisor is then computed
on-the-fly during the construction of this graph.

In our work, we propose an algorithm based on an on-the-fly construction of a new version of
the SOG called Hyper Symbolic Observation Graph (HSOG, see Figure 1) where nodes
[super aggregates, represented by red rectangles in Fig. 1] are sets of aggregates (not
single states), actions (linking two aggregates) are observed by the supervisor only and
arcs (linking two super aggregates e.g. the event {a} in Fig. 1) are labeled with actions
observed by the attacker. This graph allows us to represent the state space in a condensed
manner which alleviates the explosion state problem.

Figure 1

5

A comprehensive security analysis of the Belenios protocol
and more

Alexandre Debant∗

Université de Lorraine, LORIA, INRIA, CNRS, Nancy, France

Abstract
This work presents the results of a comprehensive security analysis of the e-voting protocol

Belenios including verifiability and vote secrecy. In particular, it presents an unknown attack against
vote secrecy when considering scenarios with multiple elections. In addition, it introduces a new and
more practical fix to an already known attack against verifiability. Finally, it presents ongoing works
about improving Belenios to ensure cast-as-intended and how this property can be proved using an
existing verification tool such as ProVerif.

1 Context
Electronic voting protocols aim to achieve similar security guarantees than traditional, on-site, paper-
based voting. Namely, the two main security objectives are ballot privacy (no one knows my vote) and
verifiability (a voter can check that her vote has been counted, possible assisted by auditors). As for
security protocols in general, designing protocols that are correct is difficult and many flaws are detected
a posteriori. Due to the criticity of e-voting, the state-of-the-art practice consists in rigorously proving
security. Actually, in Switzerland, this is even a legal requirement for e-voting 1: "a cryptographic and a
symbolic proof must be provided” before a deployment.

2 Contributions
In this work, we present a security analysis of the Belenios protocol 2 which claims to satisfy both vote
secrecy and verifiability. Our contributions are as follows:

• first we conducted a security analysis with the will to model the most realistic scenarios possible. In
particular, we decided to consider scenarios with multiple elections run in parallel or in sequence.
We discovered a serious vote secrecy attack which allows an attacker to learn the vote of any
targetted voter. The attack was possible because an attacker was able to replay a ballot from an
election to another. We proposed and proved correct a fix which has already been implemented.

• second, we developed a comprehensive analysis of the verifiability property. In particular, we
studied the security of the protocol depending on the assumptions that apply to the voters: the voter
verifies her vote at the end of the election (which is not realistic...), or the voter verifies her vote just
after having sent it (more realistic). In this last scenario, Belenios fails to ensure verifiability. We
thus proposed a fix that could be implemented in practice based on the use counters. To prove its
correctness we took advantage of the new version 2.3 of ProVerif which natively supports natural
numbers.

∗These works have been conducted in collaboration with Véronique Cortier
1https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Annex_of_the_Federal_Chancellery_Ordinance_

on_Electronic_Voting_V2.0_July_2018.pdf
2https://www.belenios.org/

16

3 Ongoing works
After having formally and comprehensively studied the security of Belenios, we are now working on how
Belenios can be improved to remove the trust assumption on the voting device, i.e. the device used by the
voter to create her electronic ballot. More precisely, we want to extend the Belenios protocol to ensure
cast-as-intended, i.e. ensure that a voter can be convinced that her ballot actually contains her intended
vote. In other words, the (possibly corrupted) voter’s device should not be able tp modify voter’s vote
when creating the electronic ballot.

The solution we investigate relies on random audits performed by the voter. More precisely, the
device must create three ciphertexts: c = {v}pk , c1 = {x}pk , and c2 = {v + x}pk where v is the vote of
the voter and x is a random number chosen by the voter, and a proof π ensuring that the plaintext of c2
is equal to the sum of the plaintexts of c and c1. Once these four elements are received by the server, the
voter is requested to chose b ∈ {1,2} and the device must open the corresponding ciphertext cb. Since
the device does not know which ciphertext will be audited in advance it cannot cheat on their values and
thus on the value of the plaintext of c. More precisely, a device may cheat but it will be detected with
probability 1/2.

Unfortunately, existing verification tools such as ProVerif or Taramin cannot verify such probabilistic
properties. We are thus developing techniques to get rid of these probabilities by proving sufficient
non-probabilistic conditions which allow us to conclude that the property holds with probability 1/2.

27

Analyse de contre-mesures dans le cadre d’attaques multiples

Etienne Boespflug

VERIMAG
University of Grenoble Alpes (UGA)

Grenoble, France

La sécurité des composants sensibles tels que les cartes à puce est une problématique majeure de
nos jours. Les attaquants actifs nécessitent de raisonner à propos de modèles d’attaquants puissants
capables de manipuler l’exécution et l’environnement du programme.

Les attaques par injection de fautes [BDL97, BBKN12] en sont un représentant populaire et utilisent
des perturbations physiques (impulsions électromagnétiques [PTL+11], rayons de lumière focalisée
[CMD+19], manipulation de la fréquence d’horloge [ZDC+12] par exemple) pour obtenir un avantage.
Des techniques d’injections logicielles telles que Rowhammer [KDK+14] ont été développées. De façon
similaire, les insiders attacks [PHN06] considèrent des attaquants ayant un accès sur la machine sur
laquelle s’exécute le programme visé.

De nombreuses contre-mesures logicielles ont été proposées afin de détecter ou de corriger les
fautes. Ces contre-mesures peuvent prendre des formes variées, et cette présentation s’intéresse aux
contre-mesures basées sur les tests (test-based countermeasures) qui sont composées de portions de
code appelées détecteurs visant à vérifier l’état du programme à des points précis afin de détecter, et
éventuellement de corriger, une attaque.

Dans le cadre d’attaques multiples, une première attaque peut neutraliser une contre-mesure pour
permettre à une seconde attaque d’atteindre son objectif. Cela implique que les détecteurs peuvent
être contournés. Dans ce contexte, la combinaison des chemins d’attaque crôıt rapidement et il devient
d’autant plus nécessaire de disposer d’outils et de méthodes automatiques pour évaluer la robustesse
d’un programme et de ses contre-mesures, à la fois lors des processus de conception et d’évaluation
d’un programme.

Nous proposons ici une méthodologie permettant de déterminer si certains détecteurs sont superflus
pour un programme et un modèle d’attaquant donné. Nous proposons aussi une formalisation de cette
méthode ainsi qu’une implémentation sur l’outil Lazart [PMPD14] reposant sur l’exécution symbolique.

La méthodologie, présentée à [BEPM20] prend en entrée un ensemble de traces d’exécution d’un
programme contenant des détecteurs et un modèle d’attaquant et l’objectif d’attaque. Celle-ci s’articule
en trois étapes:

• Classification des détecteurs (nécessaire, répétitif, inactif).

• Sélection des détecteurs en déterminant les ensembles de détecteurs minimaux sans introduire
de nouvelles attaques.

• Génération du programme P’ protégé.

La figure 1 décrit les résultats de notre méthode pour différents programmes d’exemples issus de la
collection FISSC [DPP+16]: verify pin (VP), firmware updater (FU), l’algorithme AES et l’exemple
GetChallenge (GC). Trois contre-mesures sont étudiées: duplication de tests (TD), SecSwift CF (SSCF)
[dF19] et LBH [LHB14]. La première colonne indique le programme protégé considéré et la seconde cor-
respond au nombre total de détecteurs présents dans ce programme. Les colonnes suivantes indiquent
le nombre de détecteurs retiré par notre approche pour chaque limite d’attaque (fautes).

Ces travaux sont réalisés dans le cadre de ma thèse intitulée ”Outils pour l’analyse de code pour la
sécurité des composants de confiance” effectuée sous la direction de Marie-Laure Potet et co-encadrée
par Cristian Ene et Laurent Mounier. Ces travaux sont supportés par SECURIOT-2-AAP FUI 23,
par l’Agence Nationale de Recherche dans le cadre du programme ”Investissements d’avenir” (ANR-
15-IDEX-02) et par le LabEx PERSYVAL Lab (ANR-11-LABX-0025-01).

1

8

Table 1: Taux de détecteur retiré pour chaque programme
Program Total de détecteur 1 faute 2 fautes 3 fautes
VP + TD 11 72% 63% 18%
VP + SSCF 13 92% 76% 23%
VP + LBH 31 93% 93% 32%
FU + TD 14 0% 0% 0%
FU + SSCF 24 12% 12% 8%
GC + TD 39 37% 34% 34%
GC + SSCF 38 57% 28% 28%
AES C + TD 8 50% 50% 0%
AES C + SSCF 13 76% 61% 38%

References

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault injection at-
tacks on cryptographic devices: Theory, practice, and countermeasures. Proceedings of the IEEE,
100(11):3056–3076, 2012.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of checking crypto-
graphic protocols for faults. In International conference on the theory and applications of crypto-
graphic techniques, pages 37–51. Springer, 1997.

[BEPM20] Etienne Boespflug, Cristian Ene, Marie-Laure Potet, and Laurent Mounier. Countermeasures op-
timization in multiple fault-injection context. In 2020 Workshop on Fault Detection and Tolerance
in Cryptography (FDTC), pages 26–34. FDTC, 2020.

[CMD+19] Brice Colombier, Alexandre Menu, Jean-Max DUTERTRE, Pierre-Alain Moëllic, Jean-Baptiste
Rigaud, and Jean-Luc Danger. Laser-induced Single-bit Faults in Flash Memory: Instructions
Corruption on a 32-bit Microcontroller. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 1–10, McLean, United States, May 2019. IEEE.

[dF19] François de Ferrière. A compiler approach to cyber-security. 2019 European LLVM developers’
meeting, 2019.

[DPP+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen, and Philippe
de Choudens. FISSC: A Fault Injection and Simulation Secure Collection. In Computer Safety,
Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim, Norway,
September 21-23, 2016, Proceedings, pages 3–11, 2016.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. ACM SIGARCH Computer Architecture News, 42(3):361–372,
2014.

[LHB14] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Software countermeasures for
control flow integrity of smart card C codes. In Pr. of the 19th European Symposium on Research
in Computer Security, ESORICS 2014, pages 200–218, 2014.

[PHN06] Christian W Probst, René Rydhof Hansen, and Flemming Nielson. Where can an insider attack? In
International Workshop on Formal Aspects in Security and Trust, pages 127–142. Springer, 2006.

[PMPD14] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. Lazart: A symbolic
approach for evaluation the robustness of secured codes against control flow injections. In Seventh
IEEE International Conference on Software Testing, Verification and Validation, ICST 2014, pages
213–222. IEEE, 2014.

[PTL+11] François Poucheret, Karim Tobich, Mathieu Lisarty, L Chusseauz, B Robissonx, and Philippe
Maurine. Local and direct em injection of power into cmos integrated circuits. In 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages 100–104. IEEE, 2011.

[ZDC+12] Loic Zussa, Jean-Max Dutertre, Jessy Clédiere, Bruno Robisson, Assia Tria, et al. Investigation of
timing constraints violation as a fault injection means. In 27th Conference on Design of Circuits
and Integrated Systems (DCIS), Avignon, France, pages 1–6. Citeseer, 2012.

2

9

Assessing bug replicability for more
security-minded bug finding

Guillaume Girol

Most problems in software verification are encoded as reachability queries
of some undesired condition, for example a bug. We then have the guaran-
tee that there is at least one program input triggering every reported bug.
However, this tells us little of their security impact. Notably, can this bug
be triggered by an attacker, or does it only happen in unreproducible initial
conditions?

To be able to distinguish these cases, we introduce a new property called
robust reachability [2] which refines the standard notion of reachability in
order to take replicability into account. A bug is robustly reachable if a con-
trolled input can make it so the bug is reached whatever the value of uncon-
trolled input. Robust reachability is better suited than standard reachability
in many realistic situations related to security (e.g., criticality assessment or
bug prioritization) or software engineering (e.g., replicable test suites and
flakiness). We propose a formal treatment of the concept, and we revisit
existing symbolic bug finding methods through this new lens. Remarkably,
robust reachability allows differentiating bounded model checking from sym-
bolic execution while they have the same deductive power in the standard
case. Furthermore, we propose the first symbolic verifier dedicated to robust
reachability: we use it for criticality assessment of 5 existing vulnerabilities,
and compare it with standard symbolic execution.

The main short-coming of robust reachability is that it dismisses reports
which can only be replicated 99% of the time, rather than 100%. We present
preliminary results towards a more quantitative approach, putting a formal
definition behind this value of 99%. Computing it looks similar but is distinct
from standard model counting. We developed new algorithms inspired by
d-DNNF-based model counters [1] to solve this new problem. This yields
promising results for a form of security-minded bug triage.

1

10

References
[1] Adnan Darwiche. On the Tractable Counting of Theory Models and its

Application to Truth Maintenance and Belief Revision. Journal of Applied
Non-Classical Logics, 11:1–2, 2000.

[2] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. Not All Bugs
Are Created Equal, But Robust Reachability Can Tell the Difference.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided
Verification, Lecture Notes in Computer Science, pages 669–693, Cham,
2021. Springer International Publishing.

2

11

CV2EC: Getting the Best of Two Worlds

Bruno Blanchet1, Pierre Boutry2, Christian Doczkal2,3, Benjamin Grégoire2, and Pierre-Yves
Strub4

1Inria
2Université Côte d’Azur, Inria

3Max Planck Institute for Security and Privacy
4École Polytechnique

The verification of cryptographic schemes - from the
protocol level down to the correct implementation of
the cryptographic primitives - is a challenging task.
This has led to the development of a number of verifica-
tion tools for cryptographic properties. These tools dif-
fer significantly as it comes to the properties they can
express and reason about as well as the level of automa-
tion they provide. For instance, the CryptoVerif (CV)
tool is primarily suited for verification at the protocol
level and provides a high degree of automation. Easy-
Crypt (EC) on the other hand provides the expressive
power to do verification at the protocol level and also
reason about the correctness of cryptographic primi-
tives. This comes at the cost of making things explicit
that are implicit in CV and providing less automation.

We have developed a translation from CV to EC
that allows cryptographic assumptions that cannot be
proved in CV to be translated to EC and proved there.
In fact, part of the high degree of automation in CV re-
lies on stating cryptographic assumptions in a nonstan-
dard form that allows the system to easily use them.
In a similar way, the declaration of distributions in CV
is very abstract, so notions like statistical distance can
be stated (assumed) but can not be proved. By trans-
lating these assumptions to EC, we can reduce these
non-standard assumptions to statements that more
closely match what one would find in a paper proof.

More concretely, games in CV are simply collections
of oracles, with the adversary and the part of the game
that calls the adversary left implicit. As a consequence,
CV cannot express any relationship between games
where the signatures of the oracles (including the num-
ber of allowed calls) are different, making hybrid argu-
ments almost impossible. In EC, adversaries and the
outer part of the game are made explicit, allowing ar-
bitrary reduction proofs.

As an example, consider a game that provides oracle
access to an encryption oracle that can be queried N
times. In CV, this looks as follows:

foreach i <= N do r <-R encseed;

Oenc(m:plaintext) := return(enc(m, k, r))

and provides N (indexed) copies of the single-call en-
cryption oracle Oenc. In EC, this would typically be
represented as a procedure (in some module)

proc enc (m:plaintext) = { ...

r <$ encseed; return enc(m, k, r); }

that can be called multiple times.
The main difficulties when translating from CV to

EC are (a) that CV implicitly logs all variable assign-
ments (e.g., the CV code above introduces an implicit
array r of length N storing all encryption seeds) and
(b) that the semantics of CV allows the adversary to
trigger the sampling of r without calling Oenc at the
same time. Both of these are solved by turning the
replication index (e.g., i) into an argument to the pro-
cedure, maintaining maps that store all the necessary
values, and providing all randomness through random
oracles that become parameters of the game in EC.
Thus, the inital example from CV is translated to EC
roughly as follows, where Oencseed.get is a random
oracle:

proc enc (i: int, m:plaintext) = { ...

if (1 <= i <= N) {

m_enc.[i] <- m; r <@ Oencseed.get(i);

c.[i] <- enc(m, k, r); return c.[i]; }

To demonstrate the usefulness of the approach, we
are working on a number of case studies. All of these
involve some kind of hybrid arguments, given that such
arguments are virtually impossible in CV:

• The reduction of the N query “real/ideal” formu-
lation of the IND-CCA2 game in CV to the stan-
dard single-challenge formulation. (done)

• The reduction from the N participant games (e.g.
insider or outsider adversaries) for authenticated
KEMs to 1 or 2 participant games. (in progress)

• The reduction of the N query formulation of the
Computational/Gap Diffie-Hellman (CDH/GDH)
games in CV to the standard, single-query formu-
lation. The obtained bounds are better than what
can be obtained by a direct hybrid argument. (al-
most done)

The arguments for CDH/GDH require a series of
changes to the way random values are sampled.
To facilitate these arguments, we developed a new
statistical-distance library for EC, allowing to bound
the advantage of an adversary in terms of the statistical
distance between the distributions used in the games.

12

Efficient Symbolic Algorithms for
Software Verification Against Fault Attacks

Soline Ducousso∗, Sébastien Bardin∗ and Marie-Laure Potet†

∗Univ. Paris-Saclay, CEA, List, Saclay, France
†Univ. Grenoble Alpes, VERIMAG, Grenoble, France

soline.ducousso@cea.fr, sebastien.bardin@cea.fr, marie-laure.potet@univ-grenoble-alpes.fr

EXTENDED ABSTRACT

Major works have delved into program analysis over the last decades, leveraging techniques
such as symbolic execution [1], static analysis [2], abstract interpretation [3], or bounded model
checking [4], to hunt for bugs and vulnerabilities, or even prove their absence [5], [6]. As bugs are
the entry point of attacks, removing them is the first step towards software security. However, an
attacker is not limited to crafting smart “input of death”, but may as well take advantage of other
attack vectors, such as (physical) hardware fault injections [7], micro-architectural attacks [8], [9]
or a combination of any of the above.

While most program analysis tools for security only look for bugs, some recent works attempt
to analyse a program taking into account attacker-induced faults. Yet, such state-of-the-art methods
face scaling issues. Mutant generation [10] creates a new modified program for each faulted path.
While other approaches [11]–[17], fork at each possible fault location. All the methods present an
inability to scale, due to the induced path explosion problem when analysing a program with all
possible fault locations – even more in a multi-fault context.

In this talk, we will report about our ongoing efforts toward providing efficient software ver-
ification techniques able to take the attacker into account. Especially, we introduce the Forkless
technique which modifies the analysed expressions and instructions to embed the fault into them
and avoid forking. We then use symbolic execution to compute the augmented path predicate and
relegate finding the useful fault locations and values to an SMT solver. We design an efficient
algorithm able to handle arbitrary data faults, variable reset and test inversion, which are amongst
the most common fault models and encompass a wide range of attack situations. We implemented
our technique inside BINSEC [18], a symbolic execution engine for binary analysis, and we evaluate
it across benchmarks from the literature. We obtain an average speed-up of 800% compared with
the baseline, exploring on average around 7 times less paths. We also report on a few security
scenario we are investigating with this approach.

REFERENCES

[1] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades later. Communications
of the ACM, 2013.

[2] Facebook. Infer static analyzer. https://fbinfer.com/.
[3] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided abstraction

refinement for symbolic model checking. J. ACM, 2003.
[4] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfiability

solving. Form. Methods Syst. Des., 2001.
[5] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier

Rival. The astreé analyzer. In Programming Languages and Systems, 2005.
[6] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. Frama-c: A software

analysis perspective. Form. Asp. Comput., 2015.
[7] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware designer’s guide to fault attacks. VLSI,

2013.
[8] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. TCAD, 2019.

13

[9] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, et al. Spectre attacks: Exploiting speculative execution. In SP, 2019.

[10] Pablo Rauzy and Sylvain Guilley. A formal proof of countermeasures against fault injection attacks on crt-rsa.
Journal of Cryptographic Engineering, 2014.

[11] Daniel Larsson and Reiner Hähnle. Symbolic fault injection. In VERIFY, 2007.
[12] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. Lazart: A symbolic approach for

evaluation the robustness of secured codes against control flow injections. In ICST, 2014.
[13] Guilhem Lacombe, David Féliot, Etienne Boespflug, , and Marie-Laure Potet. Combining static analysis and

dynamic symbolic execution in a toolchain to detect fault injection vulnerabilities. PROOFS, 2021.
[14] Hoang M Le, Vladimir Herdt, Daniel Große, and Rolf Drechsler. Resilience evaluation via symbolic fault injection

on intermediate code. In DATE, 2018.
[15] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin Meunier, and Son-Tuan Vu. Fault

attack vulnerability assessment of binary code. In CS2, 2019.
[16] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar Iyer. Symplfied: Symbolic program-

level fault injection and error detection framework. In DSN, 2008.
[17] Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and Axel Legay. An automated formal process for detect-

ing fault injection vulnerabilities in binaries and case study on present. In 2017 IEEE Trustcom/BigDataSE/ICESS,
2017.

[18] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure Potet, and Jean-
Yves Marion. Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis. In SANER, 2016.

2

14

End-to-end enforcement of fine-grained

“cryptographic”constant-time policies

Basavesh Ammanaghatta Shivakumar1, Gilles Barthe2, Benjamin Grégoire3, Vincent
Laporte4, and Swarn Priya3

1MPI-SP,Germany
2MPI-SP,Germany IMDEA Software Institute, Spain

3Université Côte d’Azur, Inria, Sophia Antipolis, France
4Université de Lorraine, CNRS, Inria, LORIA

Timing attacks are a class of side-channel attacks
in which attackers can learn about secret and oth-
erwise protected values by measuring the execution
time of programs operating on these values. A
pragmatic approach used by crypto developers to
minimize timing attacks is to reason about leakage
(or absence thereof) in a commonly accepted leak-
age model. One such commonly accepted model is
the baseline constant-time leakage model, which as-
sumes that only memory accesses and control flow
are leaked. While this leakage model is adequate for
analyzing many attacks from the literature:

• it does not account for time-variable instruc-
tions, whose execution time depends on its
operands;

• it excludes real-world code, which uses a weaker
leakage model and consequently achieves higher
performance.

We introduce a general class of fine-grained constant-
time policies that supports both weaker and stronger
leakage models and their combination.

• the baseline (BL) leakage model, where guards
and memory addresses are leaked;

• the time-variable (TV) leakage model, where
guards and memory addresses are leaked, and
the modulo operation leaks the base-2 integer
logarithm of its operands;

• the cache line model (CL), where guards and
cache lines of memory addresses are leaked;

• the TV+CL model, combining the TV and CL
models.

Then, we propose a two-step approach for enforc-
ing fine-grained constant-time policies: first, prove
that source programs are constant-time w.r.t. a fine-
grained policy using relational Hoare logic, and then
prove that compilation preserves constant-time w.r.t.
a fine-grained policy.

As a motivating example, we study the func-
tion ssl3 cbc copy mac of CBC decoding in OpenSSL.
And, our contributions are the following.

• a formalization of fine-grained constant-time
policies;

• a generic proof that the Jasmin compiler pre-
serves fine-grained constant-time policies. The
proof takes the form of an instrumented correct-
ness theorem and shows that leakage of assem-
bly programs can be computed deterministically
from leakage of source programs. The proof is
fully mechanized in the Coq proof assistant;

• a method for reasoning about fine-grained
constant-time policies using relational Hoare
logic. The method is implemented for Jasmin
programs and uses the EasyCrypt proof assis-
tant as the backend;

• formal proofs that previously unverified crypto-
graphic code is constant-time in a (non-baseline)
leakage model. These proofs often involve non-
trivial arithmetic reasoning that made them out
of the scope of all prior tools.

• a theoretical attack against OpenSSL with 32-
byte cache lines, and a formally verified fix.

The complete development is provided in supple-
mentary material1.

1https://github.com/jasmin-lang/jasmin/tree/

constant-time-op

1

15

Equational Proofs for Distributed Cryptographic Protocols

Joshua Gancher, Kristina Sojakova, Leo Fan, Elaine Shi, Greg Morrisett

In the cryptographic literature, the most common framework for reasoning about
Protocols proven secure in UC are known to be concurrently composable. Informally, this means that
if we take two protocols that are known to be sufficiently close and plug them into another protocol,
then the two resulting larger protocols will also be sufficiently close. This form of composability is
highly desirable since it allows us to reason about protocols modularly.

Unfortunately, a major drawback of the UC framework is the sheer amount of low-level arguments
one has to carry out when constructing a formal proof: for instance, proving the correctness of a
one-time pad protocol using Diffie-Hellman key exchange in EasyUC [3] required cca 18,000 lines of
code. Directly scaling up to more complex protocols in very expressive UC-based frameworks such
as EasyUC and CryptHOL [4] is therefore currently unmanageable: while these tools do make sig-
nificant technical progress, they require the user to manually construct bisimulations – or relational
invariants – and reason about them.
We propose IPDL (short for Interactive Probabilistic Dependency Logic), a language and proof
system for conducting approximate equivalence proofs for distributed cryptographic protocols. The
following features make IPDL particularly convenient to use for UC-style proofs:

Process Calculus Syntax In contrast to frameworks based on actors with mailboxes (such as
UC [2], which uses Interactive Turing Machines for this purpose), IPDL uses a process calculus based
on channels to model communication, similar to symbolic systems [1]. Each (non-input) channel in
IPDL is assigned a unique reaction that fully specifies the behavior of the channel. This process
calculus format gives a much finer-grained approach to protocol analysis that naturally supports
modular reasoning. IPDL’s process calculus expresses a broad range of cryptographic protocols,
including multi-party computation protocols and n-party protocols, where n depends on a security
parameter.

Approximate Equational Logic An IPDL program can be seen as a system of equations between
channels over which one can perform equational reasoning. Our equational logic enables one to
prove protocols secure in the simulation paradigm without resorting to any low-level bisimulation
argument.

Semantics and Computational Soundness We prove our equational logic computationally
sound using a novel operational semantics for IPDL, which uses a crucial confluence property to
safely intermix the probability of cryptography and the nondeterminism of distributed programming.

Mechanization and Case Studies We have mechanized IPDL in Coq, and open sourced it
at https://github.com/ipdl/ipdl. Using our mechanization, we have verified a number of case
studies, which range from simple communication protocols using encryption and Diffie-Hellman key
exchange to OT protocols, a semi-honest two-party GMW protocol defined over a general family of
circuits, an n-party coin toss protocol and a hash-check protocol that uses control flow non-trivially.

1

16

Due to our equational proof style, the proof effort required for our case studies is small. Our example
which builds a secure communication channel from an authenticated one using Diffie-Hellman key
exchange totals 735 LoC including definitions and all proofs.

References

[1] Bruno Blanchet. Automatic verification of security protocols in the symbolic model: The verifier
proverif. In Foundations of security analysis and design VII, pages 54–87. Springer, 2013.

[2] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. https://ia.cr/2000/067.

[3] Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: Using easycrypt to mechanize proofs
of universally composable security. In 32nd IEEE Computer Security Foundations Symposium,
2019. https://eprint.iacr.org/2019/582.

[4] Andreas Lochbihler, S. Reza Sefidgar, David Basin, and Ueli Maurer. Formalizing constructive
cryptography using crypthol. In 32nd IEEE Computer Security Foundations Symposium, 2019.
http://www.andreas-lochbihler.de/pub/lochbihler2019csf.pdf.

2

17

Formal Verification Challenges on High-Speed Cryptographic
Implementations

Miguel Quaresma, Tiago Oliveira

Max Planck Institute for Security and Privacy
{miguel.quaresma,tiago.oliveira}@mpi-sp.org

Jasmin is a framework that enables the development of highly efficient, high-assurance crypto-
graphic implementations [1, 2, 3]. Briefly, the Jasmin framework provides an intuitive program-
ming language to write implementations, a formally verified compiler to compile Jasmin programs
into assembly code, and an embedding of the Jasmin programming language into EasyCrypt, to
check the correctness and the preservation of security properties of the developed primitives. The
compiler also provides several features targeted for the cryptographic domain, specifically safety
or constant-time analysis. Jasmin implementations are targeted for a specific CPU architecture,
for instance, AMD64. Jasmin implementations utilize particular CPU instructions or instruction
set extensions such as the AVX2 to maximize the algorithm’s performance. To provide an intu-
ition, AVX2 defines a set of 256-bit registers to perform multiple arithmetic operations at once:
for instance, computing the addition between 8 64-bit values using just one instruction.

Kyber [5], one of the NIST PQC candidates, is an interesting case study for some of the chal-
lenges that formally verified (high-speed) cryptography presents when using EasyCrypt. The
functional correctness proof for the AVX2 implementation follows a 3-hop structure. The ex-
tracted EC specification is iteratively modified to obtain simpler (i.e., closer to their scalar
counterparts) semantics for the vectorized instructions. This is achieved by replacing the AVX2
instructions with (equivalent) operators that work on arrays of (scalar) values instead of vectors.
The semantics of the original implementation are preserved via equivalence proofs between con-
secutive hops. The last hop is then proven correct w.r.t. the formal Kyber specification and, by
the transitive property, equivalent to the extracted EC specification.

This approach simplifies the correctness proof of vectorized implementations by removing the
overhead when dealing with AVX2 instructions and allows for the reuse of lemmas/axioms em-
ployed by the scalar implementation’s correctness proofs. The AVX2 instructions and their
scalar counterparts are proved equivalent in a different theory which can be reused by different
projects. This approach presents several challenges. On the one hand, a choice has to be made
on whether to prioritize instruction semantics over program semantics when specifying scalar
operators equivalent to AVX2 instructions. The former simplifies equivalence proofs between
instructions and operators. However, it requires additional work when two or more sequential
AVX2 instructions work with different size elements for scalar values (e.g., VPADDW followed
by VPADDD) while the latter increases the complexity of equivalence proofs for these operators
substantially. In addition, despite the approach mentioned above, the complexity of correctness
proofs for vector implementations is primarily related to dealing with vectors’ semantics and the
isomorphisms between these and a list of scalar values.

There are also many exciting verification challenges in the context of scalar implementations,
where the code is not vectorized and does not use, for instance, AVX2. An example of such
a case is the formal verification of implementations that perform a given arithmetic operation
over field elements. In the Curve25519 [4] implementation, field elements can be represented by
four 64-bits words (or limbs). During the correctness proof, which also aims to relate a high-
level specification with the actual implementation, it is necessary to prove that, for instance, the
multiplication that is done using the limbs-representation corresponds to a multiplication that
is performed over unbounded integers and that the result remains congruent modulo the prime
p being used, in this case, 2255 − 19. It is also necessary to prove that no unexpected overflow
occurs. As a challenge, it would be interesting to study how to improve or automate parts of
this process, which is, currently, very time-consuming.

18

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-assurance and high-speed cryptography. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 1807–1823, 2017.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos,
Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: high-assurance
and high-speed cryptographic implementations. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 965–982. IEEE, 2020.

[3] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-assurance cryptography in
the spectre era. In 2021 2021 IEEE Symposium on Security and Privacy (SP), pages 788–805,
2021.

[4] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptog-
raphy - PKC 2006, pages 207–228, 2006.

[5] Joppe Bos, Leo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-Based KEM. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, pages 353–367, 2018.

19

Formal analysis of LAKE-EDHOC

Elise Klein, Mäıwenn Racouchot

January 22, 2022

The Internet Engineering Task Force (IETF) has worked on a solution for Lightweight Authenti-
cated Key Exchange (LAKE), in order to provide a new authenticated protocol [SMP21]. This protocol
is called EDHOC, for Ephemeral Diffie-Hellman Over COSE, and its design has been released with a
call [VSMW22] for formal analysis and feedback on possible flaws or improvements of EDHOC.

1 Presentation of the LAKE-EDHOC protocol

The EDHOC protocol has been designed to take into account the constraints of the Internet of Things
(IoT). Therefore, it tries to reduce the number of messages needed to complete the protocol, the
message sizes, as well as the code and memory footprint.

1.1 Protocol design

The protocol relies on a MAC-then-Sign variant for key authentication. The Initiator and the Respon-
der can choose independently to authenticate either using a signature key or a static Diffie-Hellman
key, hence providing 4 different modes. Which type of credential is used is decided in the first message
of the protocol. In each case, the key exchange is based on ephemeral Diffie-Hellman keys.

The complete protocol consists of three messages and a fourth optional message. Which cryp-
tographic primitives are used is decided through a negotiation. In the first message, the initiator I
propose a list of cipher suites that he supports. The responder R triggers an error if he does not support
any of the proposition. Otherwise, the protocol continues and R sends the information needed for I to
authenticate him. If R is authenticated, I responds with a third message containing her information.
A fourth message is possible to explicitly confirm the established Diffie-Hellman key, but it’s optional.

1.2 Security goals

The EDHOC protocol aims at ensuring mutual authentication, confidentiality, downgrade protection,
identity protection and protection of external data with a security level guaranteed by a minimal size
of key. It considers various advanced compromise scenarios giving raise to advanced properties such
as forwards secrecy, post compromise security and key compromise impersonation.

2 Our goal

Our work is based on the latest version of the EDHOC protocol. It updates a previous model of
EDHOC, in order to prove the security goals enumerated by the IETF task force. Our formal analysis
uses the novel SAPiC+ protocol platform, allowing to specify protocols in a dialect of the applied pi
calculus which can be automatically translated to and verified by the Tamarin prover [SMCB12] and
ProVerif tool [Bla16]. Using both Tamarin and ProVerif allows us to benefit from the strengths of
both tools and perform an analysis as comprehensive as possible. We also plan to rely on recent work
that relax the usual perfect cryptography assumptions, such as [JCCS19, CJ19].

References

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur., 1(1-2):1–135, 2016.

1

20

[CJ19] Cas Cremers and Dennis Jackson. Prime, order please! revisiting small subgroup and
invalid curve attacks on protocols using diffie-hellman. In 32nd IEEE Computer Security
Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019, pages 78–93.
IEEE, 2019.

[JCCS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit: Auto-
mated analysis of subtle attacks on protocols that use signatures. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 2165–2180. ACM, 2019.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated Analysis of
Diffie-Hellman Protocols and Advanced Security Properties. In 25th Computer Security
Foundations Symposium (CSF 2012), pages 78–94. IEEE, June 2012.

[SMP21] Göran Selander, John Preuß Mattsson, and Francesca Palombini. Ephemeral Diffie-
Hellman Over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-12, Internet Engi-
neering Task Force, October 2021. Work in Progress.

[VSMW22] Malǐsa Vučinić, Göran Selander, John Preuß Mattsson, and Thomas Watteyne.
Lightweight Authenticated Key Exchange with EDHOC. IEEE Computer, April 2022.

2

21

Formal analysis of security issues in dynamic virtual networks
Pierre Le Scornet, Université de Rennes 1, IRISA

January 15, 2022

Virtualization is a new development of Cloud technologies. It refers to creating a virtual version of an
actual piece of hardware, for example, a real computer with an operating system, and is controlled by a
hypervisor running on a host machine. It is often designed to respect some security properties, for example
the separation between the virtualized environment and the underlying system. Virtualization is used by
Cloud providers to create highly dynamic virtual networks containing various types of virtual machines, and
to distribute them to various clients. However, services emerging from this technology become more and
more critical to businesses and individuals, and their security weakens as networks grow in size, complexity
and dynamicity [6]. For administrators of these complex networks, it is essential to assess risks on their
infrastructure to be able to apply appropriate countermeasures.

A key component for such assessments is the concept of attack graphs, to represents both static and/or
dynamic aspects about the network and the attacker’s penetration in it. Attack graphs have already used to
model and verify network security, i.e. to check whether there exists a sequence of events leading to a security
breach. The classical approach to attack graph is to verify the security of static networks, i.e. there is a fixed
bounded list of machines and the only events are the attacker’s actions. We can cite Sheyner et al. [5] and
Ou, Boyer, and McQueen [4] state-based approach where each node describes a possible state of the network
and each arrow is an exploit, Ammann et al. [2] host-based approach where each node is a machine and each
arrow is an exploit from a source machine to its target machine, and Ammann, Wijesekera, and Kaushik [1]
vulnerability-based approach where each node is an attribute of the network, for example “is m1 connected
to m2” or “does the attacker penetrated m”, and each arrow is an exploit where the source attribute is
necessary for the exploit and the target attribute is “activated” after the exploit. However, these three
methods can perform exhaustive security analyses only on static networks, they lack the ability to represent
dynamic operations in virtual networks such as virtual machine creations/deletions/migrations. A leap in
the direction of dynamic virtual networks was recently made by Mensah [3]: she uses a host-based attack
graph model like [2], and she updates dynamically her attack graph when events happen in the network
(virtual machine creation/deletion/migration). Her tool is designed to monitor the current security risk in
the network, so her analysis is not exhaustive. Our contribution is, based on Mensah’s model, to verify the
security of the virtual network exhaustively. In details:

• We represent the virtual network and its dynamics with a snapshot transition system (STS) where
each state represents a snapshot of the virtual network and the attacker’s reach in it, and transitions
represent the network and attacker’s dynamics, such as VM creations/deletions/migrations and at-
tacker’s exploits. A snapshot contains VMs, such that each VM holds pieces of information about
its hypervisor, its internal configuration (OS, mounted drives, software version. . .) and the attacker’s
privilege in it, so snapshots formalize naturally into a finite first-order structure.

• Our goal is to check whether there exists a sequence of events leading to a security breach: it translates
naturally as a reachability problem in our STS model. Even if the set of all reachable snapshot is
potentially infinite, we prove this reachability problem to be decidable under reasonable assumptions,
and we discuss the complexity of relevant sub-problems. We especially find the problem to be Pspace-
complete for a subclass of reasonable security properties. Finally, we discuss how we can extend our
model to a vast majority of the real-life events and how to adapt our proofs to keep our results.

1

22

References
[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. “Scalable, Graph-Based Network Vulnerability

Analysis”. In: Proceedings of the 9th ACM Conference on Computer and Communications Security. CCS
’02. Association for Computing Machinery, 2002.

[2] Paul Ammann et al. “A host-based approach to network attack chaining analysis”. In: 21st Annual
Computer Security Applications Conference (ACSAC’05). 2005.

[3] Pernelle Mensah. “Generation and Dynamic Update of Attack Graphs in Cloud Providers Infrastruc-
tures”. PhD thesis. CentraleSupélec, 2019.

[4] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. “A Scalable Approach to Attack Graph Gen-
eration”. In: Proceedings of the 13th ACM Conference on Computer and Communications Security.
Association for Computing Machinery, 2006.

[5] Oleg Sheyner et al. “Automated generation and analysis of attack graphs”. In: Proceedings 2002 IEEE
Symposium on Security and Privacy. 2002.

[6] Ivan Studnia et al. “Survey of Security Problems in Cloud Computing Virtual Machines”. In: Com-
puter and Electronics Security Applications Rendez-vous (C&ESAR 2012). Cloud and security:threat or
opportunity. Nov. 2012. url: https://hal.archives-ouvertes.fr/hal-00761206.

2

23

Improving Static Analysis Precision by
Minimal Program Refinement

Charles Babu M1, Sebastien Bardin1, Matthieu Lemerre1, and Jean-Yves
Marion2

1 Université Paris-Saclay, CEA, List
2 Université de Lorraine, CNRS, LORIA

Abstract

Imprecision is a very common phenomenon in static analyses that results in
false alarms when used for program analysis and program verification. Typically
a static analysis approximates the behavior of the code through an abstract
domain [2] as checking most program properties is undecidable. Improving pre-
cision of a static analysis is an old dream, however, it is complicated. In the
last several decades as the size of software grew, the burden of doing manual
reasoning became too high, thus marking a trend toward automatic techniques
for removing false alarms. Model-checking is one of the very first and among the
pioneer on this trend towards which extended the scope of automated techniques
through the famous counterexample-guided abstraction refinement (CEGAR) [1]
principle. In the static analysis world [5], although there are some works towards
automatic techniques for improving precision, either these are not generic and
specialized for particular applications, or they rely upon a large part on syntactic
heuristics and are prone to path explosion (e.g., trace partitioning [4]).

In this talk we will report on our ongoing efforts to propose, within static
analysis, a syntactic refinement framework that is automatic, generic, and prin-
cipled. Through this novel framework, we provide an an algorithmic solution
that takes as input a program and outputs a semantically equivalent program
on which the static analysis is more precise and complete for a given property,
while ensuring minimality of the refinement process – and hopefully avoiding
path explosion.

Code obfuscation has attracted attention as an approach to protect a pro-
gram against reverse engineering. Obfuscating a program with respect to an
attacker specified as a static analyzer means making the static analysis of the
program imprecise [3]. We believe our refinement framework can help in legiti-
mate obfuscation-related security scenario, such as malware comprehension, by
automatically fine-tuning the analysis to the protected code under analysis.

References

1. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: International Conference on Computer Aided Verification.
pp. 154–169. Springer (2000)

24

2 Authors Suppressed Due to Excessive Length

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. pp. 238–252. ACM (1977)

3. Dalla Preda, M., Giacobazzi, R.: Semantic-based code obfuscation by abstract in-
terpretation. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) Automata, Languages and Programming. pp. 1325–1336. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

4. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: European Symposium on Programming. pp. 5–20. Springer (2005)

5. Rival, X., Yi, K.: Introduction to static analysis: an abstract interpretation perspec-
tive. Mit Press (2020)

25

Learning and Knowledge for Anomaly Detection
Yannick Chevalier

Journées Annuelles du GT Méthodes Formelles pour la Sécurité, 2022

1 Context
Beyond raising an alarm, it is argumented in [4] that a useful Intrusion Detection System (IDS) must
have several qualities that are out of the reach of existing systems: The ability to explain an alarm to
an operator, the ability to distinguish between a previously unseen normal behaviour and an anomaly,
and the ability to distinguish among anomalies those that are accidental and those that are related to an
attack. Our first point is that these feature make compliant IDS close to be Advice Taker (and Giver)
systems in the sense of [3].

Though we are still nowhere close to achieving this kind of intelligent system, previous work on
anomaly detection on cars’ CAN Bus [1] present a path through which we can get closer to this goal.

2 Logic and the Learning of Logs
We initiated our work on anomaly detection by considering simple characteristics of messages [2]. In
spite of the speed of the learning and the monitoring processes, and the fact the we only consider the
legitimate messages during the learning phase, we were able in most cases to obtain a better classifier
than those based on Deep Reinforcement Learning. Our analyser furthermore provided alarms with a
sort of explainability through a condition that was violated.

We then worked on improving explainations by creating algorithms trying to detect some type of
fields within the message, and thus able to better describe the cause of the alarm [2]. We also considered
a limited form of process mining restricted to and-causality, and the detection of a known multi-events
protocol, all of which can be encoded in geometric logic, a fragment of first-order when all formulas are
either positive or implications between positive formulas.

We plan to present a further extension in which the detection algorithms can be any algorithm, in
the sense of being a continuous function between Scott Domains. In this extension we define another
fragment of first-order logic that is able to both instruct the learner with a partial specification of the
system, express the properties learnt during the log analysis, and describe in terms of a set of false literals
why an alarm is raised.

References
[1] Chevalier, Y. Data exchange for anomaly detection: The case of the can bus. In Conference on

Artificial Intelligence for Defense, pages 25–32. MIT Press, 2021.

[2] Chevalier, Y., Rieke, R., Fenzl, F., Chechulin, A., and Kotenko, I. V. Ecu-secure: Characteristic
functions for in-vehicle intrusion detection. In Kotenko, I. V., Badica, C., Desnitsky, V., Baz, D. E.,
and Ivanovic, M., editors, Intelligent Distributed Computing XIII, 13th International Symposium on
Intelligent Distributed Computing, IDC 2019, St. Petersburg, Russia, 7-9 October, 2019, volume 868
of Studies in Computational Intelligence, pages 495–504. Springer, 2019.

[3] McCarthy, J. Programs with common sense. In Semantic Information Processing, pages 403–418.
MIT Press, 1968.

[4] Sommer, R. and Paxson, V. Outside the closed world: On using machine learning for network
intrusion detection. In 2010 IEEE Symposium on Security and Privacy, pages 305–316, 2010.

1

26

Mechanized Proofs of Adversarial Complexity and Application
to Universal Composability

Manuel Barbosa
University of Porto & INESC TEC

mbb@fc.up.pt

Gilles Barthe
MPI-SP & IMDEA Software Institute

gbarthe@mpi-sp.org

Benjamin Grégoire
Inria & Université Côte d’Azur
benjamin.gregoire@inria.fr

Adrien Koutsos
Inria

adrien.koutsos@inria.fr

Pierre-Yves Strub
Institut Polytechnique de Paris

pierre-yves@strub.nu

Abstract. We enhance the EasyCrypt with a Hoare logic for
reasoning about computational complexity (execution time and
oracle calls) of adversarial computations. Our Hoare logic is built
on top of the module system used by EasyCrypt for modeling
adversaries. We prove that our logic is sound w.r.t. the semantics
of EasyCrypt programs.

We showcase (for the first time in EasyCrypt and in other compu-
ter-aided cryptographic tools) how our approach can express pre-
cise relationships between the probability of adversarial success
and their execution time. We exemplify this by revisiting the secu-
rity proofs of some well-known cryptographic constructions and
we present a new formalization of Universal Composability (UC).

Cryptographic Reduction. Cryptographic designs are typically
supported by mathematical proofs of security. Unfortunately, these
proofs are error-prone and subtle flaws can go unnoticed for many
years. Therefore, it is desirable that cryptographic proofs are for-
mally verified using computer-aided tools [8]. EasyCrypt is a proof
assistant [3, 4] which has been used to prove security of a diverse
set of cryptographic constructions in the computational model of
cryptography [1, 2]. In this setting, cryptographic designs and their
corresponding security notions are modeled as probabilistic pro-
grams. Moreover, security proofs provide an upper bound on the
probability that an adversary breaks a cryptographic design, often
assuming that the attacker has limited resources that are insuffi-
cient to solve a mathematical problem. While EasyCrypt excels at
quantifying the probability of adversarial success, it lacks support
for keeping track of the complexity of adversarial computations.
This limitation means that manual inspection is required to check
that the formalized claims refer to probabilistic programs that fall
in the correct complexity classes. This work overcomes this limita-
tion and showcases the benefits of reasoning about computational
complexity in EasyCrypt, through three broad contributions.

Formal verification of complexity statements. We define a formal
system for specifying and proving complexity claims. Our formal
system is based on an expressive module system, which enriches
the existing EasyCrypt module systemwith declarations of memory
footprints (specifying what is read and written) and cost (specifying
which oracles can be called and how often). This richer module
system is the basis for modeling the cost of a program as a tuple.
The first component of the tuple represents the intrinsic cost of
the program, i.e. its cost in a model where oracle and adversary
calls are free. The remaining components of the tuple represent the
number of calls to oracles and adversaries. This style of modeling

is compatible with cryptographic practice and supports reasoning
compositionally about (open) programs.

Our formal system takes the form of a Hoare logic for proving
complexity claims that upper bound the cost of expressions and
commands. Furthermore, an embedding of the formal system into
a higher-order logic provides support for reductionist statements
relating adversarial advantage and execution cost, for instance:

∀A.∃B. advS(A) ≤ advH(B) + ϵ ∧ cost(B) ≤ cost(A) + δ
where typically ϵ and δ are polynomial expressions in the num-
ber of oracle calls. The above statement says that every adversary
A can be turned into an adversary B, with sensibly equivalent
resources, such that the advantage of A against a cryptographic
scheme S is upper bounded by the advantage of B against a hard-
ness assumption H . Note that the statement is only meaningful
because the cost of B is conditioned on the cost of A, as the ad-
vantage of an unbounded adversary is typically 1. The ability to
prove and instantiate such ∀∃-statements is essential for capturing
compositional reasoning principles.

We show correctness of our logic w.r.t. an interpretation of pro-
grams. Our interpretation provides the first complete semantics for
the EasyCrypt module system, which was previously lacking.

Implementation in EasyCrypt. We have implemented our formal
system in EasyCrypt, providing mechanisms for declaring the cost
of operators and for helping users derive the cost of expressions and
programs. A key step is to embed our Hoare logic for cost into the
ambient higher-order logic—similar to what is done for the other
program logics of EasyCrypt. This allows us to combine judgments
from different program logics, and it enhances the expressiveness
of the approach. Implementation-wise, this extension required to
add or rewrite around 8 kLoC. We also exemplify our approach on
some classic examples from the EasyCrypt distribution [7] (Bellare
and Rogaway, Hashed ElGamal and Cramer-Shoup encryption).

Case study: Universal Composability. Using our enriched imple-
mentation of EasyCrypt, we develop a new fully mechanized formal-
ization of Universal Composability (UC) [5, 6]. Our mechanization
covers the core notions of UC, the classic composition lemmas,
transitivity and composability, which respectively state that UC-
emulation (as a binary relation between cryptographic systems)
is closed under transitivity and arbitrary adversarial contexts. As
an example, modular proofs for Diffie-Hellman key exchange and
encryption over ideal authenticated channels are composed to con-
struct a UC secure channel.

27

REFERENCES
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie

Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub,
and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS Key
Management Service. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London, UK, November 11-15, 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM, 63–78. https://doi.org/10.1145/3319535.3354228

[2] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François
Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,
and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-
dards: Indifferentiability of Sponge and Secure High-Assurance Implementations
of SHA-3. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,
1607–1622. https://doi.org/10.1145/3319535.3363211

[3] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial. In Foundations of
Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes
in Computer Science), Alessandro Aldini, Javier López, and Fabio Martinelli (Eds.),
Vol. 8604. Springer, 146–166. https://doi.org/10.1007/978-3-319-10082-1_6

[4] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
2011. Computer-Aided Security Proofs for the Working Cryptographer. In Ad-
vances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings (Lecture Notes in Computer
Science), Phillip Rogaway (Ed.), Vol. 6841. Springer, 71–90. https://doi.org/10.1007/
978-3-642-22792-9_5

[5] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067. (2000).
https://eprint.iacr.org/2000/067.

[6] Ran Canetti. 2001. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. 136–145.

[7] The EasyCrypt development team. 2021. Source code of our EasyCrypt. (September
2021). https://github.com/EasyCrypt/easycrypt.

[8] Shai Halevi. 2005. A plausible approach to computer-aided cryptographic proofs.
IACR Cryptol. ePrint Arch. 2005 (2005), 181. http://eprint.iacr.org/2005/181

2

28

Model Checking of Vulnerabilities in Smart
Contracts: A Solidity-to-CPN Approach

Extended Abstract

Blockchain, which was first introduced as the technology driving Bitcoin, has
now outgrown the confines of cryptocurrencies to find its way into a wide range
of application areas, including Business Process Management (BPM). Indeed,
its intrinsic properties, such as its decentralized structure, capacity to give trust
among untrustworthy parties, immutability, and financial transparency, appear
to provide the necessary instruments for devising suitable solutions for current
BPM issues, particularly for collaborations.

This evolution has been mainly owed to the concept of smart contracts being
introduced to Blockchains. A smart contract allows the execution of interdepen-
dent transaction sequences while adhering to the rules established in it. On the
other hand, a business process may be considered as a set of activities connected
by causal relationships with the purpose of attaining a business goal. As a re-
sult, smart contracts appear to be excellent candidates for implementing and
automating BPs.

Despite significant advancements in Blockchain adoption for BPM, the tech-
nology is still in its infancy, and deploying smart contracts to carry out BPs
cannot be deemed safe. As a result, proving the correctness of the smart con-
tracts to be deployed on a blockchain is critical for the integrity of the specified
business processes.

In our work we propose a formal approach based on the transformation of So-
lidity smart contracts, with consideration of the BPM context in which they are
used, into a Hierarchical Coloured Petri net. We express a set of smart contract
vulnerabilities as temporal logic formulae and use the Helena model checker to,
not only detect such vulnerabilities while discerning their exploitability, but also
check other temporal-based contract-specific properties.

Our proposed approach is based on model checking of CPN models and
comprises mainly three phases:

1. transforming the smart contracts’ Solidity code into CPN submodels corre-
sponding to their functions.

2. transforming the BPM context into a CPN model
3. constructing a CPN model w.r.t an LTL property that can express: (i) a

vulnerability in the code or (ii) a contract-specific property, linking it to a
CPN model representing the behavior to be considered, and feeding it the
model checker to verify the targeted property.

More precisely, we opt for a hierarchical CPN to represent the considered smart
contracts’ execution and interaction w.r.t the provided BPM context specifica-
tion.

29

2

Level-0 Level-2

{f1si,..,fisi,..,fnsi,
...

f1sj,..,fisj,..,fnsj}

t
fj[si]

M
fh[si]

Level-1

Model
Checking

Transformation
Algorithm (I) tf1[si] tfi[si] tfn[si]

......

Level-0
submodels

M
f1[si]

M
fi[si]

M
fn[si]

Transformation
Algorithm (III)

M
fi[si]

M
fj[si]

t
fh[si]

input

t
fk[si]

+ Behavior
specification

Smart Contract
Layer

Behavior
Layer

 LTL Property

output

Verified Property?

Counter example

output

Verified Property?

Counter example

M
B

S

P

Fig. 1. Overview of the approach

As shown in Figure 1, we represent each function of a smart contract by an
aggregated transition that encapsulates a submodel corresponding to the internal
workflow of the former. In fact, our aim at this first step is to get building blocks
for the hierarchical model that will be fed to the model checker. Then, given a
context specification (transformed into CPN) and an LTL property to be verified,
the final CPN model is built by (1) linking the aggregated transition representing
the targeted function to the behavioral model and (2) building a hierarchy by
explicitly representing function calls in the submodel in question (if the checked
property requires it).

We have implemented a graphical tool called Solidity2CPN that automates
the different steps of the proposed approach and makes it accessible to a broader
range of users who are unfamiliar with the aspects of formal verification.

Keywords: Blockchain · Business Process Management · Model Checking · So-
lidity · Smart Contracts · Hierarchical Coloured Petri Nets · Temporal properties.

30

Sound Static Analysis of Regular Expressions for
Vulnerabilities to Denial of Service Attacks

Francesco Parolini, Antoine Miné

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
LIP6, 75005 Paris, France

Regular expressions (regexes) are often used to verify that strings in programs
match a given pattern. Modern programming languages offer support to regexes in
standard libraries, and this encourages programmers to take advantage of them. How-
ever, matching engines of languages such as Python, JavaScript, and Java employ
algorithms with exponential worst-case time complexity in the length of the string.
This is because advanced features such as backreferences extend the expressiveness of
regular expressions. This comes at the cost of exponential matching in the worst case,
even for regexes that do not exploit such features. An attacker can craft a string to
force the matcher to exhibit the exponential behaviour to perform a Regular Expression
Denial of Service (ReDoS) attack, a particular type of algorithmic complexity attack.

ReDoS attacks are vastly underestimated Denial of Service (DoS) attacks. In a
recent study of regexes usage, in nearly 4,000 Python projects, the authors find that
over 42% of them contain regexes [1], while in [2] the authors determine that that up
to the 1% of the regexes in open source projects have a superlinear worst-case time
behaviour. Staicu et al. [3] showed that hundreds of popular websites are threatened by
ReDoS vulnerabilities. Since it is difficult to detect ReDoS vulnerabilities with manual
inspection, it is necessary to automate this critical process. However, for now, there is
no practical and widely adopted solution to detect ReDoS vulnerabilities.

In this work, we put forward a novel approach to statically detect ReDoS vul-
nerabilities. We define a tree semantics of the matching process, and we leverage it
to introduce an analysis that determines whether a regex has a ReDoS vulnerability
or not. In particular, the analysis returns an overapproximation of the language of
words that can cause exponential matching, being effectively sound but not complete.
While, theoretically, it is possible to lose precision, our experiments show that over
1802 regexes our analysis never raises a false alarm.

We implemented our algorithm in a tool called rat, and we found it to be on average
two orders of magnitude faster than most existing detectors, while being proved to be
sound and never raising a false alarm in practice. Furthermore, rat can extract the
language of possibly dangerous words, being more expressive than most other tools.

References

1. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: ISSTA. pp. 282–293. ACM (2016)

2. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale. In:
ESEC/SIGSOFT FSE. pp. 246–256. ACM (2018)

3. Staicu, C., Pradel, M.: Freezing the web: A study of ReDoS vulnerabilities in
JavaScript-based web servers. In: USENIX Security Symposium. pp. 361–376.
USENIX Association (2018)

31

Stack smashing analysis by abstract interpretation
of binary code

Clément Ballabriga, Julien Forget, Guillaume Person
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

firstname.lastname@univ-lille.fr

I. CONTEXT

Binary code analysis has become a popular approach for
automated security analysis, as it offers high fidelity reasoning
about software behaviour. In comparison, source code analysis
requires to make assumptions about the complex compiler
behaviour in order to ensure that properties proved for the
source code still hold for the compiled binary. Furthermore,
in many situations the source code may not be available.

Abstract interpretation enables to compute for each program
location an abstract state that over-approximates the set of
possible (concrete) states at that location. Based on this
approximation, we can build tools that automatically prove the
absence of certain program malfunctions, such as memory cor-
ruptions for instance. This contrasts with (and complements)
dynamic analyses, that enable to discover program security
vulnerabilities (e.g. symbolic execution [3], [4]).

II. GOAL

In this work, we focus on stack smashing vulnerabilities.
Stack smashing is a case of stack buffer overflow where
an instruction writes to the address containing the return
address of a function currently being executed, thus potentially
enabling the execution of attacker-controlled code. Our goal
is to propose a method that is capable of ensuring the absence
of stack smashing vulnerabilities, by fully automated analysis
of binary code.

III. CONTRIBUTION

Our contribution is based on our previous work on rela-
tional abstract interpretation of binary code [2]. The analysis
proposed in [2] automatically discovers properties relating
the contents of the registers and of the memory at each
program location. The main originality of this analysis is that
it identifies the subset of memory addresses and registers to be
represented in the abstract state as the analysis progresses. In
comparison, in abstract interpretation of source code the set of
variables to analyze is known beforehand as they are declared
in the program. Other abstract interpretation techniques for
binary code have been proposed, but they are not relational.
The use of a relational domain enables to analyse accesses to
addresses that are not known statically, and thus to discover
a wider range of vulnerabilities than with a non-relational
domains (e.g. approaches based on the popular Value Set
Analysis [1]).

To analyze stack smashing vulnerabilities, we enrich ab-
stract states with information on the call stack. More precisely,
abstract states track the values of the return address of each
function call of the stack. Based on this information, we can
then check that the return address of a function call is the
same at the beginning and at the end of its execution, thus
ensuring that no stack smashing can occur.

In our presentation, we will recall the abstract interpretation
procedure of [2] and detail its application to stack smashing
analysis.

REFERENCES

[1] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in
x86 executables. In Compiler Construction, pages 2732–2733. Springer,
2004.

[2] Clément Ballabriga, Julien Forget, Laure Gonnord, Giuseppe Lipari, and
Jordy Ruiz. Static analysis of binary code with memory indirections using
polyhedra. In International Conference on Verification, Model Checking,
and Abstract Interpretation, pages 114–135. Springer, 2019.

[3] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A dynamic
symbolic execution toolkit for binary-level analysis. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 653–656. IEEE, 2016.

[4] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 138–157, 2016.

32

Structured Leakage and Applications to Cryptographic

Constant-Time and Cost

Gilles Barthe1, Benjamin Grégoire2, Vincent Laporte3, and Swarn Priya2

1MPI-SP,Germany IMDEA Software Institute, Spain
2Université Côte d’Azur, Inria, Sophia Antipolis, France

3Université de Lorraine, CNRS, Inria, LORIA

A compiler performs aggressive program optimiza-
tions and also respect the input-output behavior of
programs. Execution traces define the behavior of
programs and compiler correctness is stated as an
inclusion between the set of traces of the target pro-
gram and the set of traces of source programs. How-
ever, a correct compiler suffers from three short-
comings in a security context: first, many common
security properties are hyperproperties rather than
properties; in particular, information flow properties,
which cover a broad range of applications are rela-
tional properties, i.e. sets of pairs of traces. Second,
several security properties of interest, including pop-
ular notions of side-channel resistance are modelled
by an instrumented semantics that collects (an ab-
straction of) the adversarially visible physical leak-
age. Third, the inclusion of instrumented traces fail
for most common compiler optimizations, e.g. reg-
ister allocation and dead code elimination that may
add, modify or remove atomic leakages. The main
contribution of our work is a novel approach for prov-
ing preservation of non-functional properties, and
in particular cryptographic constant-time. Crypto-
graphic constant-time is a software countermeasure
against cache-based timing attacks, an effective class
of side-channel attacks that exploit the latency be-
tween cache hits and cache misses to retrieve crypto-
graphic keys and other secrets from program execu-
tion. We model leakage using a dedicated data struc-
ture that collects atomic leakages. The data struc-
ture is closely aligned with the operational semantics
of programs. We define a language of leakage trans-
formers that transform leakage of source programs
into leakage of target programs. A key benefit of

leakage transformers is that they yield an algorithm
for computing the leakage of target programs from
leakage of source programs. With accurate leakage-
transformers at hand, a range of source-level reason-
ing becomes possible. The structured notion of leak-
age is used to compute the program’s cost, which
counts how many times each instruction is executed.
The benefit of structured leakage is that it enables
computing the cost without looking at the program.
Source-level cost analysis with the leakage transform-
ers is used in our work to compute upper-bounds of
run-time cost of target programs statically. Our certi-
fied cost transformer deduced from the leakage trans-
formers yields an exact cost rather than an upper
bound for the generated programs (for all transfor-
mations except loop unrolling, where our transformer
yields an upper bound). We implement our approach
on top of the Jasmin framework. Our contributions
in a nutshell:

• the definition of structured leakage and leakage
transformers;

• formal proofs of correctness of leakage transformers
for all the passes of the Jasmin compiler;

• a proof that the Jasmin compiler preserves CCT;

• a certified algorithm for computing the cost of
assembly programs from the cost of Jasmin pro-
grams.

All results presented in this work have been formally
verified using the Coq Proof Assistant. The complete
development is provided in supplementary material 1.

1https://github.com/jasmin-lang/jasmin/tree/

constant-time

1

33

Support for Detecting Integer Over�ow Vulnerability

Salim Yahia Kissi1 Yassamine Seladji1 Rabéa Ameur-Boulifa2

1LRIT, University of Abou Bekr Belkaid, Tlemcen, Algeria
2LTCI, Télécom ParisTech, Institut Polytechnique de Paris, France

{salimyahia.kissi, yassamine.seladji}@univ-tlemcen.dz, Rabea.Ameur-Boulifa@telecom-paris.fr

EXTENDED ABSTRACT.

Organizations and companies develop very complex software today. Errors and �aws can be introduced
at di�erent phases of the software development lifecycle and can lead to exploitable vulnerabilities.
Furthermore, considering that most systems are exposed to multiple users and environments, such
�aws can lead to attacks (or actions) with unpredictable consequences in terms of damage and costs.
It is therefore crucial that developers and users know how to detect and prevent them. Despite the
substantial knowledge about vulnerabilities nowadays there is still an increasing trend in the number of
reported vulnerabilities, that is why software security has become an active research area. this involves
various approaches [4, 1] reverse engineering, code review, static and dynamic analysis, fuzzing and
debugging.

Increasing scale of software systems requires vulnerabilities scanning tools and supports, that ease their
detection and can help coders to avoid them in the development of the code. Furthermore, the use
of tools that integrate formal methods might provide evidence for security goals. Towards this end,
we have proposed an approach [3] for detecting security bugs which are due to memory safety issues.
We were particularly interested in detecting exploits that may be caused by integer over�ow. The
relevance of our approach lies in the fact that it is based on hardware/software co-analysis. We provided
a uniform method for software analysis, considering the speci�cations of their execution environment
(CPUs, compilers, operating systems). The main idea is to build a formula based on the path condition
of a given target location in conjunction with the formula (assertions) specifying the environment of
its execution, and asking a SMT solver for a satisfying solution, to �nd out whether the unintended
solution is possible. Formally speaking, we use symbolic execution to generate program constraint
(PC), and get security constraint (SC) from prede�ned security requirements. In addition, based on
a precise knowledge on the execution context of the analysed program (EC), we propose to solve the
statement: EC ⊢ PC ∧ ¬SC we seek to �nd out if there is an assignment of values to program inputs
� executed in a certain context � which could satisfy PC but violates SC.

This paper is an extension of our previous work. In this paper, we have signi�cantly extended and
implemented the proposed methodology. First, we enrich the set of formulas specifying the e�ects of
memory reference instructions, cross di�erent execution environments to address more platforms. The
assertions are derived from various sources, including bad programming practices, compilers con�gura-
tion settings, operating systems, Common Weakness Enumeration and C standards. Second, we give
the technical approach for the vulnerabilities detection: we give details of the tool we are developing
for the analysis of C programs. The tool relies on Clang/LLVM compiler infrastructure [2]. This option
was motivated by the bene�ts o�ered by the infrastructure, including the fact that it supports various
target environments such as (x86, x86-64, arm, riscv64, . . .).

Keywords: Formal methods, Security vulnerabilities, Safety bugs.

1

34

References

[1] Baldoni, R., Coppa, E., D'elia, D. C., Demetrescu, C., and Finocchi, I. A survey
of symbolic execution techniques. ACM Computing Surveys 51, 3 (2018).

[2] Cadar, C., and Nowack, M. KLEE symbolic execution engine in 2019. Int. J. Softw.

Tools Technol. Transf. 23, 6 (2021), 867�870.

[3] Kissi., S., Seladji., Y., and Ameur-Boulifa., R. Detection of security vulnerabilities
induced by integer errors. In Proceedings of the 16th International Conference on Software

Technologies - ICSOFT, (2021), INSTICC, SciTePress, pp. 177�184.

[4] Li, H., Kim, T., Bat-Erdene, M., and Lee, H. Software vulnerability detection using
backward trace analysis and symbolic execution. Proceedings - 2013 International Confer-

ence on Availability, Reliability and Security, ARES 2013 (2013), 446�454.

2

35

Systematic, automated discovery of security protocol

attacks

that exploit weaknesses in common hash functions

A. Dax, V. Cheval, C. Cremers, L. Hirschi, C. Jacomme, S. Kremer

Cryptographic hash functions are a fundamental building block in nearly all crypto-
graphic protocols. They are traditionally required to meet several properties : collision
resistance, first- and second-preimage resistance, . . . ; ideally, they also behave “perfectly”
and additionally do not suffer from phenomena like length-extension attacks. Modern hash
functions like SHA3 (Keccak) are believed to satisfy all these properties and essentially act
like so-called random oracles.

In many modern protocol security analyses, both in the computational and symbolic
setting, hash functions are assumed to be “perfect” in this sense and act like a random
oracle : the modeled hash function meets all desired cryptographic properties, does not
suffer from length extension attacks, and each input/output combination is completely
independent of any others.

In practice though, real hash functions are unfortunately far from perfect. There are
several reasons for this. First, the security of hash functions is often based on a heuristic ar-
gument (since we cannot reduce them to a known hard problem) and history has shown that
many hash functions that initially seemed secure turned out to be broken some years later.
Second, many hash function designs followed the Merkle-Damg̊ard construction, which in
its default setup, allows for so-called length extension attacks.

In this work, we formally define a lattice of possible hash weakness encompassing and
combining many practical weaknesses of hash functions. We then model the multiple capa-
bilities of the lattice in the symbolic model, and thus how we can use Tamarin or Proverif
to verify a protocol for such hash functions modelings. By applying a systematic way to
explore all weaknesses and combination of weaknesses with those tools, we were able to
identify for multiple real life protocols like IKE, Sigma or SSH both what are the strongest
threat models under which the protocol is secure, and the minimal threat models that
make the protocol insecure.

1

36

Type-directed Program Transformation for Constant-Time
Enforcement

Frédéric Besson
Inria

frederic.besson@inria.fr

Thomas Jensen
Inria

thomas.jensen@inria.fr

Gautier Raimondi
Inria

gautier.raimondi@inria.fr

Abstract
Constant-time is a programming discipline which protects crypto-
graphic code against a wide class of timing attacks. This discipline
can be formalised as a non-interference property and enforced by an
information-flow type-system which prevents branching and mem-
ory accesses over secret data. We propose a relaxed information-
flow type system which tracks indirect flows but only rejects pro-
grams leaking secrets through direct flows. We exploit typing in-
formation to guide a program transformation which compiles any
well-typed program into a semantically equivalent constant-time
program.

1 Introduction
Cryptographic code is notoriously hard to implement. The reason
is that it needs to be correct and fast. Yet, functional correctness and
speed are not enough. The implementation also needs to be secure
with respect to side-channel attacks where attackers attempt to ex-
tract cryptographic keys and other confidential information by ob-
serving execution time or cache behaviour. Constant-time program-
ming is the de facto standard to protect implementations against a
wide range of timing attacks that exploit micro-architecture side-
channels e.g., cache attacks. The constant-time programming dis-
cipline imposes further constraints on the code: it is forbidden to
make control flow decisions [5] or access memory using secret data
as addresses [4].

The present work builds on the insight of Cauligi et al. [3] who
establish that an information flow type system ensures that a well-
typed program can be automatically transformed into a constant-
time program. We follow the same methodology but propose a
more permissive type-system which allows more programs to be
transformed into a constant-time equivalent. The main observa-
tion of the paper is that distinguishing between direct and indirect
information flows enables a number of program transformations for
constant-time that make it possible to transform program which pre-
vious methods would have rejected.

2 Overview of FaCT’s approach
FaCT [3] is a DSL for writing constant-time code. FaCT defines an
information flow type system and guarantees that any well-typed
program can be transformed into a functionally equivalent but
constant-time program.

Predicated code. In order to remove secret control dependencies,
FaCT performs a so-called if-conversion [1] and generates branch-
less, predicated code. Consider the code assigning the variable x to
either e1 or e2 depending on a secret s

if 𝑠 then 𝑥 = 𝑒1 else 𝑥 = 𝑒2
𝑖 𝑓 −𝑐𝑜𝑛𝑣.−−−−−−−−→ 𝑥 = 𝑠?𝑒1 : 𝑥 ;𝑥 =!𝑠?𝑒2 : 𝑥

After if-conversion, we get a branchless code which eliminates the
leakage due to the conditional. In terms of information flow, we
transformed an indirect flow into a direct flow.

Public Safety. An issue with if-conversion is that it is not always
a semantics-preserving transformation and can introduce safety
issues such as out-of-bounds errors.

To solve this issue, the FaCT type system generates verification
conditions to ensure that the memory accesses are still valid after

transformation i.e., that the expression 𝑒 in a predicated assignment
𝑥 = 𝑠?𝑒 : 𝑒 is safe to evaluate, independent of the value of 𝑠 .

3 Indirect Flow Tracking Type System
Compared to a usual information-flow type system, we make a
distinction between direct and indirect flows and explicitly record
the conditional responsible for indirect flows. Our types extend
the usual {H, L} lattice with an intermediate level I(𝑠) which repre-
sents an indirect flow built from the conditionals identified by the
program points in the set 𝑠 .

Type::=H | L | I(𝑠) 𝑠 ∈ P(P)
Example 1. Typing Example Consider the following snippet,

(if 𝑠@𝑝 then 𝑥 = 𝑒1 else 𝑥 = 𝑒2);𝑦 = 𝑡 [𝑥]
the security context 𝜅 = L and the initial typing environment Γ such
that Γ ⊢ 𝑠 : H Γ ⊢ 𝑒 : L 𝑒 ∈ {𝑒1, 𝑒2, 𝑡}.

Our type system allows for 𝑥 to be typed I({𝑝}) after the condition,
and therefore the access 𝑡 [𝑥] to be accepted as well, because I({𝑝}) is
strictly below H.

4 Type-Directed Program Transformations
As FaCT imposes constraints on its type system, we motivate
through example how we enable additional program transforma-
tions. All code snippets presented are rejected by FaCT and its
implementation.

Delayed if-conversion. Unfortunately, if-conversion is not suf-
ficient to remove indirect leakage due to assignments inside the
conditional. Consider the following example.

if 𝑠 then 𝑥 = 𝑒;𝑦 = 𝑡 [𝑥] else skip
Using the classical transformation, wewould generate the following
insecure code. 𝑥 = 𝑠?𝑒 : 𝑥 ;𝑦 = 𝑠?𝑡 [𝑥] : 𝑦

However, in order to generate a equivalent secure constant-time
code, we can perform a delayed if-conversion so that the direct flow
is generated after the array access. Concretely, our type system
accepts the initial code and generates the following secure code.

𝑥𝑡 = 𝑒;𝑦𝑡 = 𝑡 [𝑥𝑡];𝑥 = 𝑠?𝑥𝑡 : 𝑥 ;𝑦 = 𝑠?𝑦𝑡 : 𝑦.

We enable this transformation by the use of I(𝑠) to remember that
x is secret due to an indirect flow.

Out-of-scope Indirect Flows. In the previous case, the leaky
memory access is within the scope of the conditional and therefore
a delayed if-conversion is sufficient to remove the leaky access.

Consider the code snippet of Example 1. The conditional move to
𝑥 must take place after the memory access 𝑡 [𝑥] which is outside the
scope of the conditional. Our solution is to associate the offending
memory access with the scope of the conditional responsible for
the indirect flow, by using the next construction. This way, we can
transform it differently depending on if it has a indirect flow just
by being in a security context, or by using a insecure variable. We
obtain the following code where the memory access is performed
after both branches of the conditional, i.e always.

if 𝑠 then 𝑥 = 𝑒1 else 𝑥 = 𝑒2 next 𝑦 = 𝑡 [𝑥]
We can then apply the previously shown delayed if-conversion.

37

Frédéric Besson, Thomas Jensen, and Gautier Raimondi

Safety is Public. In order to prevent if-conversion from generat-
ing unsafe programs, we assume that the source program is safe
and that rendering a program more safe does not introduce leakage.
As a result, we can instrument array accesses to dynamically ensure
that the index are within bounds. The transformation is semantics
preserving and is also secure providing the array bounds are public.

5 Ongoing Work
We are currently implementing the presented type-directed trans-
formation within the Jasmin compiler [2]. Proving that the program
transformations are correct i.e. preserve the observable semantics,
should not be problematic and require standard proof techniques.
The completeness of the transformation i.e. proving that any typable
program is successfully compiled into a constant-time program is
less standard.We can however notice that the usual C-T type system
can be used to verify a posteriori the security of the transformation.

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion of control

dependence to data dependence. In J. R. Wright, L. Landweber, A. J. Demers, and
T. Teitelbaum, editors, Conference Record of the Tenth Annual ACM Symposium
on Principles of Programming Languages, Austin, Texas, USA, January 1983, pages
177–189. ACM Press, 1983. doi: 10.1145/567067.567085. URL https://doi.org/10.
1145/567067.567085.

[2] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte, T. Oliveira,
H. Pacheco, B. Schmidt, and P. Strub. Jasmin: High-assurance and high-speed
cryptography. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1807–
1823. ACM, 2017. doi: 10.1145/3133956.3134078. URL https://doi.org/10.1145/
3133956.3134078.

[3] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby, J. Renner, B. Gré-
goire, G. Barthe, R. Jhala, and D. Stefan. Fact: a DSL for timing-sensitive com-
putation. In K. S. McKinley and K. Fisher, editors, Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 174–189. ACM, 2019. doi:
10.1145/3314221.3314605. URL https://doi.org/10.1145/3314221.3314605.

[4] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program execution. In 2013
IEEE 26th Computer Security Foundations Symposium, New Orleans, LA, USA, June
26-28, 2013, pages 51–65. IEEE Computer Society, 2013. doi: 10.1109/CSF.2013.11.
URL https://doi.org/10.1109/CSF.2013.11.

[5] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel
attacks. In D. Won and S. Kim, editors, Information Security and Cryptology - ICISC
2005, 8th International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected
Papers, volume 3935 of Lecture Notes in Computer Science, pages 156–168. Springer,
2005. doi: 10.1007/11734727_14. URL https://doi.org/10.1007/11734727_14.

38

Verifying Low-Level, Concurrent Programs with Steel
Aymeric Fromherz1

Inria Paris
aymeric.fromherz@inria.fr

Overview. Steel [7, 1] is a framework to develop and prove concurrent programs written in F?,
a dependently-typed programming language and proof assistant. Inspired by Iris [4, 2, 3], Steel
relies on an impredicative concurrent separation logic to reason about concurrent, dependently-
typed F? programs. Steel provides several useful features to reason about programs. First,
its memory model relies on Partial Commutative Monoids (PCMs), which can encode many
programming idioms such as sharing disciplines relying on fractional permissions or references
whose contents evolve monotonically according to a user-defined preorder. Additionally, Steel
supports dynamically-allocated invariants, which can be shared between threads and allows to
reason about lock-free concurrent interactions.

Automation. Specifications in Steel are written using a combination of textbook concurrent
separation logic and a restricted form of memory predicates. For instance, Figure 1 provides the
signature of a standard swap function. In this specification, the expects and provides annotations
correspond respectively to the separation logic pre- and postcondition. The ptr r predicate
captures that the reference r is valid, while the separation logic ∗ operator indicates that the
two references are separated, that is, they are disjoint in memory. The expects and provides
annotations thus capture the shape of memory before and after executing swap. The requires and
ensures annotations correspond to selector predicates, that is predicates operating on fragments
of memory corresponding to the separation logic specification. These predicates allow to specify
properties about memory contents such as functional correctness: in this case, that the values
of r1 and r2 are swapped after execution.

val swap (r1 r2:ref int) : Steel unit
(expects ptr r1 ∗ ptr r2) (provides λ_ → ptr r1 ∗ ptr r2)
(requires λ_ →>) (ensures λs _ s’ → s’.[r1] = s.[r2] ∧ s’.[r2] = s.[r1])

Figure 1: A simple Steel program: swap.

The distinction between separation logic predicates and selector predicates enables us to
use different tools to discharge the respective verification conditions. We provide a (partial)
decision procedure implemented as an F? tactic to reason about separation logic predicates,
while selector predicates are discharged using F?’s native support for SMT solvers, thus making
verification semi-automated.

Applications. Steel was successfully used to verify a variety of programs [1], including binary
self-balancing trees, a monotonic concurrent counter due to Owicki-Gries [6], a racy 2-locks
concurrent queue [5], and a library to model message-passing concurrency between two parties
on dependently typed channels. Steel aims at being a foundation for verified, low-level systems
programming. As such, Steel code currently extracts to verified C code, and we hope to extend
our extraction mechanism to also support Rust. In this talk, we propose to give an overview of
the Steel framework, as well as current verification projects using it such as the development of
a verified memory allocator.

39

Verifying Low-Level, Concurrent Programs with Steel Aymeric Fromherz

References
[1] Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis

Merigoux, and Tahina Ramananandro. Steel: Proof-oriented programming in a dependently typed
concurrent separation logic. 2021.

[2] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. 2016.
[3] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer.

Iris from the ground up: A modular foundation for higher-order concurrent separation logic. Journal
of Functional Programming, 28, 2018.

[4] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. 2015.

[5] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. 1996.

[6] Susan Owicki and David Gries. Verifying properties of parallel programs: An axiomatic approach.
Communications of the ACM, 19(5):279–285, 1976.

[7] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido
Martínez. SteelCore: An extensible concurrent separation logic for effectful dependently typed
programs. 2020.

40

Verifying Redundant-Check Based Countermeasures:
A Case Study

Thibault Martin
Université Paris-Saclay, CEA, List

Palaiseau, France
thibault.martin@cea.fr

Nikolai Kosmatov
Thales Research and Technology

Palaiseau, France
nikolaikosmatov@gmail.com

Virgile Prevosto
Université Paris-Saclay, CEA, List

Palaiseau, France
virgile.prevosto@cea.fr

Context. Physical attacks of critical embedded systems (via light
pulses, laser shots, clock, voltage or electromagnetic glitches, etc.)
consist in causing a fault that alters correct execution of soft-
ware [3, 5]. A frequent goal of such attacks is to bypass some
critical checks in the code (such as user authentication, software
integrity or software authentication checks) in order to get to a pro-
tected point that gives access to sensitive information or physical
resources.

To counter such attacks, designers of embedded software use
in particular redundancy based countermeasure schemes [3, 4]. In
some of these schemes, critical checks (i.e. conditional statements,
or tests) in the code are duplicated. In this way, if attackers manage
to bypass one check by injecting a fault and flipping the result of
the check, the redundant check still prevents them from reaching
the protected point. This countermeasure assumes that it is unlikely
to inject two faults by physical attacks during the same execution
in a coordinated way. It can be generalized to any number 𝑘 ≥ 1 of
coordinated faults: if an attacker is assumed to be able to introduce
𝑘 coordinated faults, each critical check should be repeated 𝑘 + 1
times. For simplicity, in the examples of the paper we use 𝑘 = 1.

Examples. A simple C code with a redundant-check countermea-
sure is illustrated by Fig. 1. Assuming password is a user-submitted
password and secret is the correct password, the duplicated con-
ditional ensures that a bad password will be detected even if one
of the conditions is inverted by an attack. Figure 2 shows a more
interesting example, with redundant code integrity checks. Such a
check is performed by function check_code_integrity. As a protection to
bit flipping, this function returns a value of the secbool type, whose
values sectrue and secfalse have a maximal bit-distance. The second
condition is written in a different way, and is erroneous here: the
developer should have used a bitwise negation ~chck2 instead of a
logical negation !chck2. If chck2 is secfalse, its logical negation is in
fact 0 so that the test on line 8 is always false. Hence, if an attacker
manages to flip the result of only the test on line 6, they will execute
the protected line 9 even if code integrity check fails. This example
illustrates an incorrect countermeasure, due to a misuse of secbool

values.
Motivation. Due to their redundant behavior, a correct imple-

mentation of countermeasures is difficult to verify, yet crucial to
ensure resistance to the considered faults. Various approaches are
used to assess the efficiency of countermeasures on a given system.
Fault injection based techniques—reproducing potential physical
attacks on the target device—allow validation engineers to detect
(confirmed) vulnerabilities or get confidence that the system is
sufficiently resistant to attacks. Such techniques have the advan-
tage to consider the real-life target system, but remain costly and
time-consuming, and cannot guarantee that the system will resist
to similar attacks in a slightly different setting (e.g. different sig-
nal force, frequency, duration or number of attempts). Another
approach consists in searching potential attacks at software level,

1 if(password != secret) return 1; // Error , bad password
2 if(password != secret) return 1; // Error , bad password
3 // Protected: Successfully authenticated

Figure 1: Password check with a countermeasure.
1 typedef enum {secfalse = 0x55aa55aa ,
2 sectrue = 0xaa55aa55} secbool; // secure true/false values
3 secbool check_code_integrity (); // checks code integrity
4 int main(){
5 secbool chk1=check_code_integrity ();
6 if(chk1 != sectrue) return 1; // Error , compromised code
7 secbool chk2=check_code_integrity ();
8 if(!chk2 == sectrue) return 1; // incorrect countermeasure
9 // Protected: Successful code integrity check
10 }

Figure 2: Integrity check with a countermeasure.
by simulating a chosen set of possible faults in the code and try-
ing to identify potential attacks using test generation [11] or its
combination with static analysis [9], or to prove their absence us-
ing formal verification [6, 7]. Even if their results are subject to
assumptions (about the considered fault model, fault simulation
approach, compiler, etc.), software-level approaches provide a use-
ful complement to physical evaluation: they are cheaper, can be
fully automatic and can rigorously consider all potential faults with
respect to the chosen fault simulation. Such techniques help to find
hybrid software/hardware attacks [1].

This study continues previous efforts [6, 7, 9, 11] in this direction.
We consider a simple fault model that allows the attacker to invert
any subset of at most 𝑘 checks in the code. “Test inversion” is seen
as a very useful mode of fault simulation in a recent joint report by
the French certification and evaluation authorities [1, Sec. 16.4].

Contributions. This talk presents a source-code-level formal veri-
fication technique of correct implementation of redundant-check
based countermeasures. Its purpose is to prove that provoking up
to 𝑘 test inversions in the code should not allow an attacker to
reach the protected code. It includes two steps: a dedicated code
instrumentation simulating possible faults in critical checks ("test
inversions") by mutations; and deductive verification of the result-
ing code trying to formally prove that the countermeasures effec-
tively prevent attacks. The proposed technique was implemented
inside LTest1 [2], an open-source testing toolset, and relies on the
Frama-C2 verification platform [8]. We evaluated this technique
on a real-life case study: the bootloader module of a secure USB
storage device called WooKey3, implemented by the ANSSI and
supposed to be resistant to fault injection attacks. We were able
to formally prove the correctness of all redundant-check counter-
measures in the module except two, and found an error in one of
the remaining ones. This error remained undetected despite the
fact that this module was rigorously analyzed by 10 evaluation
centers4 as part of a recent evaluation challenge [1]. It confirms the
interest of the proposed dedicated approach. This extended abstract
presents the work [10] accepted at SAC-SVT 2022.
1https://github.com/ltest-dev/LTest
2https://frama-c.com
3https://wookey-project.github.io/target.html
4ITSEFs (Information Technology Security Evaluation Facility), or CESTIs in French

41

Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto

Acknowledgements. This work was partially supported by ANR
project SATOCROSS (grant ANR-18-CE25-0015-01). The authors
are grateful to ANSSI researchers for presentingWooKey and useful
discussions.

REFERENCES
[1] ANSSI and French ITSEFs. Inter-cesti: Methodological and technical feedbacks

on hardware devices evaluations. In SSTIC Symposium, pages 105–200, 2020.
[2] Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosmatov. An

all-in-one toolkit for automated white-box testing. In Proc. of the 8th International
Conference on Tests and Proofs (TAP 2014), pages 53–60. Springer, 2014.

[3] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault
injection attacks on cryptographic devices: Theory, practice, and countermea-
sures. Proceedings of the IEEE, 100(11):3056–3076, 2012.

[4] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. Countermeasures against fault attacks on software imple-
mented AES: effectiveness and cost. In Proc. of the 5th Workshop on Embedded
Systems Security (WESS 2010). ACM, 2010.

[5] Shivam Bhasin, Paolo Maistri, and Francesco Regazzoni. Malicious wave: A
survey on actively tampering using electromagnetic glitch. In Proc of the 2014
Int. Symp. on Electromagnetic Compatibility, pages 318–321. IEEE, 2014.

[6] Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. Formal
verification of a CRT-RSA implementation against fault attacks. J. Cryptogr. Eng.,
3(3):157–167, 2013.

[7] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé. Formally
verified software countermeasures for control-flow integrity of smart card C
code. Comput. Secur., 85:202–224, 2019.

[8] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A software analysis perspective. Formal Asp. Comput.,
27(3):573–609, 2015.

[9] Guilhem Lacombe, David Féliot, Etienne Boespflug, and Marie-Laure Potet. Com-
bining static analysis and dynamic symbolic execution in a toolchain to detect
fault injection vulnerabilities. In Proc. of the 10th International Workshop on
Security Proofs for Embedded Systems (PROOFS 2021), colocated with the 2021
Conference on Cryptographic Hardware and Embedded Systems (CHES 2021), 2021.

[10] Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto. Verifying redundant-
check based countermeasures: A case study. In Proc. of the 37th Annual
ACM/SIGAPP Symposium on Applied Computing, Software Verification and Testing
Track (SAC-SVT 2022). ACM, 2022. To appear. See https://nikolai-kosmatov.eu/
publications/martin_kp_sac_2022.pdf.

[11] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. Lazart: A
symbolic approach for evaluation the robustness of secured codes against control
flow injections. In Proc. of the 7th IEEE International Conference on Software
Testing, Verification and Validation (ICST 2014), pages 213–222. IEEE, 2014.

42

Vérification des mécanismes de sécurité des navigateurs Web
BENJAMIN FARINIER, TU Wien, Autriche

Cette communication présente l’article WebSpec: Towards Machine-Checked
Analysis of Browser Security Mechanisms, co-écrit avec Lorenzo Veronese,
Mauro Tempesta, Marco Squarcina et Matteo Maffei, en cours de relecture à
S&P 2022. Une prépublication 1 et les sources 2 du projet sont accessibles en
ligne.

Contexte. Les navigateursWeb sont considérés comme faisant par-
tie des logiciels les plus complexes utilisés aujourd’hui, et le nombre
de composants de la plateforme Web, c’est-à-dire les fonctionnalités
du navigateur et les mécanismes de sécurité, augmente constam-
ment. Ceux-ci sont généralement proposés par les fournisseurs de
navigateurs sous la forme d’un brouillon (W3C Editor’s draft) et dis-
cutés au sein de la communauté. Si un consensus suffisant est atteint,
le processus de normalisation doit passer par plusieurs niveaux de
maturité avant de devenir une recommandation du W3C.
Alors que la mise en œuvre des nouveaux composants de la pla-

teforme Web est soumise à des tests de conformité approfondis [2],
leurs spécifications font l’objet d’un examen manuel par des experts
pour identifier les problèmes potentiels : il s’agit d’un processus
continu et extrêmement complexe qui doit tenir compte de l’interac-
tion avec les API existantes et devrait, en principe, être révisé chaque
fois que de nouveaux composants arrivent sur la plateforme Web.
Malheureusement, les revues manuelles ont tendance à négliger les
failles logiques, ce qui conduit finalement à des vulnérabilités de
sécurité critiques. Par exemple, l’en-tête HttpOnly a été introduit
par Internet Explorer 6 [4] comme moyen de protéger la confidentia-
lité des cookies en ne les exposant pas à des scripts. Huit ans après
son lancement, il a été découvert [5] que cette propriété pouvait
être trivialement violée par tout script accédant aux en-têtes de
réponse d’une requête AJAX via la fonction getResponseHeader.
Des vulnérabilités de sécurité au niveau des spécifications Web ont
également affecté CORS [3], CSP [6] et Trusted Types [1], pour n’en
nommer que quelques-uns.

Problème. Cette situation désastreuse découle de plusieurs fac-
teurs concomitants : (1) les composants de la plateforme Web sont
spécifiés de manière informelle et, par conséquent, leur analyse, bien
que menée par des yeux d’experts, peut facilement ignorer les cas
extrêmes ; (2) il n’y a pas de compréhension précise des propriétés
de sécurité qui doivent être considérées comme des invariants sur
le Web et, par conséquent, être préservées par les mises à jour de la
plateformeWeb ; (3) les composants de la plateformeWeb sont géné-
ralement évalués isolément, sans tenir compte de leurs interactions,
c’est-à-dire de la nature enchevêtrée de la plateforme Web.

Contributions. Dans ce travail, nous préconisons un changement
de paradigme, en soumettant les composants de la plateformeWeb et
leurs interactions à une analyse de sécurité formelle, par opposition
à un examen manuel d’experts. En particulier, nous présentons
WebSpec, le premier cadre formel pour l’analyse de la sécurité des
mécanismes de sécurité des navigateurs qui prenne en charge la

1. https://arxiv.org/abs/2201.01649
2. https://github.com/SecPriv/webspec

détection automatisée des failles logiques ainsi que les preuves de
sécurité vérifiées par machine.WebSpec comprend :

— un modèle de navigateur formel en Coq, qui formalise un
ensemble de composants de base de plateforme Web, com-
prenant à la fois des composants bien établis (cookies, SOP,
CORS, etc.) et d’autres récemment introduits (par exemple,
CSP3 et Trusted Types) ;

— la définition formelle des dix invariants attendus sur le Web
(par exemple, l’intégrité des __Host-cookies et le fait qu’une
page protégée par CSP ne peut être lue ou modifiée que par
les scripts autorisés par la politique) ;

— un compilateur, qui traduit le modèle du navigateur et les
invariants en formules SMT afin de permettre la vérification
automatique de ces invariants sur le modèle par le solveur
Z3. En cas de violation, WebSpec reconstruit la séquence
minimale d’actions qui y ont conduit, affichant visuellement
l’attaque correspondante.

Nous démontrons l’efficacité deWebSpec par :
— la découverte d’une nouvelle attaque sur les cookies causée

par l’interaction avec les anciennes API et d’une nouvelle
incohérence entre le CSP et une modification prévue de la
norme HTML;

— la redécouverte de trois failles logiques signalées précédem-
ment dans la plateforme Web actuelle ;

— l’ajustement dumodèle pour refléter les états passés de la pla-
teforme Web afin d’identifier cinq attaques précédemment
publiées, dans le but de montrer qu’une analyse de sécurité
automatisée aurait permis d’éviter ces vulnérabilités ;

— la réalisation de quatre preuves dans le modèle Coq, mon-
trant la justesse de nos modifications proposées pour cor-
riger les vulnérabilités qui affectent actuellement la plate-
forme Web, y compris une nouvelle technique contre un
contournement des Trusted Types.

RÉFÉRENCES
[1] Trusted-types : Restrict to secure contexts. https://github.com/w3c/webappsec-

trusted-types/issues/259#issuecomment-630863753.
[2] The web platform tests project. https://web-platform-tests.org/.
[3] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song. Towards a Formal Foun-

dation of Web Security. In 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, 2010.

[4] O. Community. Httponly cookies. https://owasp.org/www-community/HttpOnly.
[5] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the Incoherencies in Web

Browser Access Control Policies. In 31st IEEE Symposium on Security and Privacy,
S&P 2010, 2010.

[6] D. F. Somé, N. Bielova, and T. Rezk. On the Content Security Policy Violations due
to the Same-Origin Policy. In 26th International Conference on World Wide Web,
WWW 2017, 2017.

1

43

List of sponsors

GDR Sécurité Informatique
Le GDR Sécurité Informatique est un outil d’animation de la recherche française créé par

l’Institut des sciences de l’information et de leurs interactions (INS2I) du CNRS, et ouvert à
toute la communauté. Les thématiques couvertes par le GDR incluent le codage et la

cryptographie, les méthodes formelles pour la sécurité, la protection de la vie privée, la sécurité
des systèmes, des logiciels et des réseaux, la sécurité des systèmes matériels, la sécurité et les

données multimédia.

CEA
Le Commissariat à l’énergie atomique et aux énergies alternatives (CEA) est un organisme

public de recherche à caractère scientifique, technique et industriel (EPIC). Acteur majeur de
la recherche, du développement et de l’innovation, le CEA intervient dans quatre domaines : la

défense et la sécurité, les énergies bas carbone (nucléaire et renouvelables), la recherche
technologique pour l’industrie et la recherche fondamentale (sciences de la matière et sciences
de la vie). S’appuyant sur une capacité d’expertise reconnue, le CEA participe à la mise en
place de projets de collaboration avec de nombreux partenaires académiques et industriels.

Meta
Our mission of giving people the power to build community and bring the world closer

together requires constant innovation. That’s where research comes in. We believe the most
interesting research questions are derived from real-world problems. Our expert teams of

scientists and engineers work quickly and collaboratively to build smarter, more meaningful
experiences on a global scale by solving the most challenging technology problems, as well as

look toward the future.

44

Author Index

Ameur-Boulifa Rabéa, 34, 35
Ammanaghatta Shivakumar Basavesh, 15

Ballabriga Clément, 32
Barbosa Manuel, 27, 28

Bardin Sébastien, 13, 14, 24, 25
Barthe Gilles, 15, 27, 28, 33

Besson Frédéric, 37, 38
Blanchet Bruno, 12

Boespflug Etienne, 8, 9
Boulme Sylvain, 2, 3

Boutry Pierre, 12

Chevalier Yannick, 26

Debant Alexandre, 6, 7
Doczkal Christian Doczkal, 12

Ducousso Soline, 13, 14

Fan Leo, 16, 17
Farinier Benjamin, 43

Forget Julien, 32
Fromherz Aymeric, 39, 40

Gaaloul Walid, 29, 30
Gancher Joshua, 16, 17
Garfatta Ikram, 29, 30
Girol Guillaume, 10, 11
Graiet Mohamed, 29, 30
Gregoire Benjam, 27, 28

Grégoire Benjamin, 12, 15, 33

Jacomme Charlie, 36
Jensen Thomas, 37, 38

Kissi Salim Yahia, 34, 35
Klai Kais, 5, 29, 30
Klein Elise, 20, 21

Kosmatov Nikolai, 41, 42
Koutsos Adrien, 27, 28

Laporte Vincent, 15, 33
Le Scornet Pierre, 22, 23
Lemerre Matthieu, 24, 25

M Charles Babu, 24, 25
Maffei Matteo, 43

Marion Jean-Yves, 24, 25
Martin Thibault, 41, 42

Miné Antoine, 31
Morrisett Greg, 16, 17

Oliveira Tiago, 18, 19

Parolini Francesco, 31

Person Guillaume, 32
Potet Marie-Laure, 13, 14
Prevosto Virgile, 41, 42

Priya Swarn, 15, 33

Quaresma Miguel, 18, 19

Racouchot Mäıwenn, 20, 21
Raimondi Gautier, 37, 38

Seladji Yassamine, 34, 35
Shi Elaine, 16, 17

Sojakova Kristina, 16, 17
Souid Nour, 5

Squarcina Marco, 43
Strub Pierre-Yves, 4, 27, 28
Strub Pierre-Yves Strub, 12

Séré Antoine, 4

Tempesta Mauro, 43
Torrini Paolo, 2, 3

Veronese Lorenzo, 43

45

46

	A CompCert Backend with Symbolic Encryption, Torrini Paolo [et al.]
	A Formalization of the Proof of Correctness of a Number-Theoretic Transform in the Context of the Hakyber Cryptographic Primitive, Séré Antoine [et al.]
	A General Framework for Supervisory Control of Opacity, Souid Nour [et al.]
	A comprehensive security analysis of the Belenios protocol and more, Debant Alexandre
	Analyse de contre-mesures dans le cadre d'attaques multiples, Boespflug Etienne
	Assessing bug replicability for more security-minded bug finding, Girol Guillaume
	CV2EC: Getting the Best of Two Worlds, Blanchet Bruno [et al.]
	Efficient Symbolic Algorithms for Software Verification Against Fault Attacks, Ducousso Soline [et al.]
	End-to-end enforcement of fine-grained ''cryptographic'' constant-time policies, Ammanaghatta Shivakumar Basavesh [et al.]
	Equational Proofs for Distributed Cryptographic Protocols, Gancher Joshua [et al.]
	Formal Verification Challenges on High-Speed Cryptographic Implementations, Quaresma Miguel [et al.]
	Formal analysis of LAKE-EDHOC, Racouchot Maïwenn [et al.]
	Formal analysis of security issues in dynamic virtual networks, Le Scornet Pierre
	Improving Static Analysis Precision by Minimal Program Refinement, M Charles Babu [et al.]
	Learning and Knowledge for Anomaly Detection, Chevalier Yannick
	Mechanized Proofs of Adversarial Complexity and Application to Universal Composability, Koutsos Adrien [et al.]
	Model Checking of Vulnerabilities in SmartContracts: A Solidity-to-CPN Approach Extended Abstract, Garfatta Ikram [et al.]
	Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks, Parolini Francesco [et al.]
	Stack smashing analysis by abstract interpretation of binary code, Ballabriga Clément [et al.]
	Structured Leakage and Applications to Cryptographic Constant-Time and Cost, Barthe Gilles [et al.]
	Support for Detecting Integer Overflow Vulnerability, Kissi Salim Yahia [et al.]
	Systematic, automated discovery of security protocol attacks that exploit weaknesses in common hash functions, Jacomme Charlie
	Type-Directed Program Transformation for Constant-Time Enforcement, Besson Frédéric [et al.]
	Verifying Low-Level, Concurrent Programs with Steel, Fromherz Aymeric
	Verifying Redundant-Check Based Countermeasures: A Case Study, Martin Thibault [et al.]
	Vérification des mécanismes de sécurité des navigateurs Web, Farinier Benjamin [et al.]
	List of sponsors
	Author Index

