
A CompCert Backend with Symbolic Encryption

Paolo Torrini, Sylvain Boulmé

INP-UGA, Verimag

GT-MFS, Frejus, 21.03.2022

NanoTrust/IntrinSec

NanoTrust Project: protecting execution by secure compilation with
binary code encryption

compiling C code, targeting RISC-V 32-bits instruction set
collaboration between Verimag (Marie-Laure Potet, David
Monniaux) and CEA (Olivier Savry)

co-developed at CEA (prioprietary artifacts):
LLVM compiler (multi-level encryption)
matching RISCY processor

developed at Verimag (discussed in this talk):
IntrinSec – our certified compiler based on CompCert RISC-V
backend extended with symbolic instruction-level encryption

2/22

CompCert

Certified C compiler formalized and verified in Coq
Compiles to Asm, different backends including RISC-V
Memory model: split into blocks, address = (block, offset),
separates code from data, a code block for each function
Chain of passes as translations between intermediate languages,
simulation proof for each (forward simulation, reversible to
backward by determinism of the target)
Correctness: compiled code behaviour is source behaviour

3/22

CompCert lower backend

Linear, Mach: linerarized languages
list of instructions, sequential execution
structured state (normal, call, return)
structured call stack, pop and push,
function parameters in caller stackframe
Linear: stack as inductive datatype
Mach: inductive stack matched by linked list of stackframes in
memory (translation from Linear to Mach enforces slot separation)

Asm:
state: memory and registers
stack: stored in data memory
PC points to next instruction (either sequential or jump), SP to
stack, RA to return address

4/22

Code and Control Flow Integrity

attacks either exploit hardware faults or buffer overflows
code insertion/reuse attacks (code integrity issue): trick the
processor into executing external code, or modified internal code
stack overflow attacks (control flow integrity issue): divert control
flow by altering return addresses in the stack
general mitigating policy:

separate executable code and rewritable data.
however: the stack contains control-flow relevant data
Abadi’s work on CFI: constrain control flow to a statically
computed control-flow graph (CFG) by instrumenting Asm code
with node labels and dynamic checks

5/22

CFI vulnerabilities

1 Preservation of CFG forward edges (jumps)
1 direct jumps: destination known at compile time
2 indirect jumps: destination only known at runtime

2 Preservation of CFG backward edges (returns): involves
protecting the stack

up to Mach: stack is inductively structured
beyond: backlink stack pointer and return address are vulnerable

6/22

Code vulnerabilities

1 Preservation of executable code (CI)
2 Preservation of non-structural stack data: function call

parameters, local variables (memory data already in Mach)
3 Preservation of function entry points

up to Mach: language ensures function code only accessed from
the start
problem: compilation to Asm disrupts this guarantee
goal: hardening Asm to prevent such disruption

7/22

Workplan

Two main ideas:

1 use encryption of executable code to ensure CI and (partial) CFI
2 make explicit in Asm protection which is implicit in the Mach

semantics

8/22

NanoTrust/IntrinSec structure

Asm semantics
decryption and

behaviour

behaviour

execution

executable

encryption
linking and

ELF

binary compilation

with symbolic encryption

compiler

Coq

C semantics

instrumented RISC−V

(IntrinSec backend)

C source code

compilation to Asm

specified Asm code

symbolic
refinement

decryption and

encrypted runtime behaviour

specified source code

processor

9/22

IntrinSec structure

Mach

Linear

RISC−V

instruction set

C source

IntrinSec
backend

(deep) extension: registers,

forward simulation
 proofs (reversible)

(deep) extension: stackframe

traces

traces

traces

traces

encryption,

IntrinSec model:

decryption

(shallow model)

10/22

Encryption in NanoTrust

1 instruction-level: single instruction encryption, based on 32 bit
masks (one for each instruction, combined with plaintext by XOR)
and stream cyphers

[CEA, IntrinSec explicitly]
2 program-level: whole program encryption using heavy-weight key

[CEA, IntrinSec implicitly]
3 pointer-level: code and data encryption based on fat pointers

[CEA]

11/22

Instruction-level encryption

E E EE

. . . In

0 k

. . .
EXEC

Function Block

n

Function Code (plaintext)

Positions (offsets)

I1I0

D

.

M1
next_mask

MkMn

seed

M0

Ik

1

CI0 CI1 CIn CIk

Processor PC MSK_CNT

Synchronous Stream Cypher

Cyphertext

encryption E = XOR

decryption D = XOR

(Crypto Block)

stream cypher (here): finite stream of masks defined by

1 initial mask (generated from a seed)

2 next mask function (pseudo-random)

12/22

IntrinSec backend

symbolic instruction-level encryption and decryption model:
CompCert verification goes as far as assembly, encryption applied
to binary code after linking, so we resort to an axiomatic model

ISA instrumentation on top of RISC-V:
3 crypto registers:

1 MSK CONT: mask for the next instruction
2 MSK BRN: destination mask before the jump
3 RET MSK: return access mask

4 crypto instructions:
1 load destination mask known at compile-time
2 load destination mask known at runtime
3 store mask to the stack
4 load mask from the stack

13/22

Instruction-level encryption protocol

crypto block = function code block
function entry mask stored at block start,
internal masks sequentially determined by next mask
when jumping:
load destination mask,
store return mask on stack (as with return address)
when returning:
load return mask from stack (as with return address)

14/22

Example

int fact(int n){
if (n <= 1) return 1;
return n*fact(n-1);

}

ecr.enter
fact:
mv x30, sp
addi sp, sp, -16
sw x30, 0(sp)
sw ra, 4(sp)
ecr.sw emr, 8(sp)
sw x8, 12(sp)
mv x8, ra0
ecr.load emb, L100
addi x31, x0, 1
blt x31, x8, .L100

addi ra0, x0, 1
ecr.load emb, L101
j .L101

.L100:
addi ra0, x8, -1
ecr.load emb, fact
call fact
mul ra0, x8, ra0

.L101:
lw x8, 12(sp)
lw ra, 4(sp)
ecr.lw emb, 8(sp)
addi sp, sp, 16
jr ra

15/22

IntrinSec step relation (extending RISC-V)

New relation (decryption condition): the value in v2 is the mask for v1

Inductive valid_mask_at_pc (v1 v2: val) : Prop :=
| valid_mask_at_pc_intro : ∀ (fb: block) (ofs: ptrofs),

v1 = Vptr fb ofs ∧ v2 = Vint (encrypt_msk ofs fb) →
valid_mask_at_pc v1 v2.

Step relation – the step at TS is executed only if decryption succeeds (the
mask in MSK_CNT is right for the value in PC):

Inductive Asm_step: state → trace → state → Prop :=
| exec_step_internal: ∀ b ofs f i rs m rs' m',

rs PC = Vptr b ofs →
find_funct_ptr b = Some (Internal f) →
find_instr ofs f = (Some i) →

(*DS*) valid_mask_at_pc (rs PC) (rs MSK_CNT) →
(*TS*) exec_instr b f i rs m = Next rs' m' →

Asm_step (State rs m) E0 (State rs' m').

16/22

IntrinSec simulation theorem

Revised Match state relation:

Inductive match_states: Mach. state → Asm.state → Prop :=
| match_states_normal: ...
| match_states_call: ...
| match_states_return: ...

Forward simulation theorem:

Theorem step_simulation :
∀ S1 t S2, Mach_step S1 t S2 →
∀ S1' (MS: match_states S1 S1'),
(∃ S2', plus Asm_step S1' t S2' ∧ match_states S2 S2')
∨ (measure S2 < measure S1 ∧ t = E0 ∧ match_states S2 S1').

Informally: each Mach step, starting from Mach state matched by Asm
state, can be simulated by Asm steps (no stuttering).

17/22

Instruction-level encryption: security aspects

Code integrity ensured by encryption, also against code insertion
exploits
function code only accessed from start (entry mask needed, we
assume next mask is secret)
stack data not protected
CFG forward edges:

direct jumps protected by encryption
indirect jumps: access mask stored with the function

CFG backward edges: stack data not protected, but return
address needs is paired with return mask

18/22

Generalizing crypto blocks: in progress

crypto blocks need not be function blocks:
special labels to reset the stream cypher
makes encryption model more complex, as encryption function
depends on code, not only on position
helps shifting to different, syntax-based notion of straightline code
(code without jumps)

19/22

Security aspects: the Mach point of view

Regardless of encryption, how do Mach security properties (function
entry points and structural stack character) reflect in Asm?

PseudoAsm: intermediate language between Mach and Asm
same instruction set as Mach
Asm-style semantics, state = memory + registers, memory stack,
use of PC, RA and SP
breakdown of translation from Mach to Asm:
1) from Mach to PseudoASM
2) from PseudoASM to Asm

20/22

PseudoAsm back-translation

translating back from PseudoAsm to Mach
stronger match-state relation, requiring the memory stack to
preserve the structure of the inductively defined one
(memory-well-formedness, MWF)
(backward) simulation provable under the stronger match-state
relation
MWF can be enforced in forward translations from Linear to Mach,
and from Mach to PseudoAsm
under the MWF restriction, PseudoAsm programs can only
behave as Mach ones, and so preserve CFG as much as them

21/22

Conclusions

certified IntrinSec compiler
lightweight encryption, low overhead
main workload: approx 6-7 months person work, approx. 6000
lines code added, Coq 8.10, CompCert 3.8
main hurdle: loss of reuse wrt standard CompCert backends, due
to changes in the notion of straightline code
improve modularity
memory model, fat pointers
proving formally security properties

22/22

