General Framework for
Opacity Supervision

Nour Elhouda SOUID & Kais Klai St

{souid, kais.klai}@lipn.univ-paris13.fr <« |

LIPN Researc h Lab
University Sorbonne Paris Nord - 1

23 March 2022 "'\l r

Ou

P
LR\
Y

INE

Introduction
Background

Proposed Approach
Web-Service Use Case
Developed Tool

Conclusion & Perspectives

Motivation: Cybersecurity

- Vulnerable systems used daily
- The severity of the damages caused by recent attacks (ransomware’, Deny of Service?).

— In this context, formal methods appear as a reliable technique to model systems and verify their security
properties= information flow

- Opacity: a malicious third party is able to deduce that the system is in a secret state?

W=

e 1:(e.g., TeslaCryptin 2015, WannaCry in 2017)
e 2:(e.g., the MiraiKrebs, OVH DDoS in 2016)
3

Preliminaries: The Opacity Property

® Defined w.rt secret predicate (a set of secret states/ runs) & an
observer considered as an attacker.

® The predicate ¢ is opaque if no attacker can ever conclude from its
provided interface (observation) that the current run r of the system
satisfies @ (r |=).

e Formal Definition: Vr € L(T) such that r |= ¢, there exists I’ € L(T)
such that (r ~r') A (r = @) Attacker observation= {a, b}

Opaque system !

Preliminaries: Symbolic Observation Graph (SOG)

Verifying the opacity— State explosion problem
= regroup states into "aggregates" = SOG

® Deterministic graph where each node is a set of states linked

by unobservable actions and each arc is labeled with an
observable action.

® Nodes of the SOG are called aggregates— managed efficiently
using decision diagram techniques

® Complexity?

® SOGopaque © NONE of its aggregates is included in the

secret opaque systems

Preliminaries: Supervisory Control

Background (SCT)

A formal framework for modeling and control of Discrete Event Systems (DESs).

® Objective: synthesize a supervisor — can prevent some actions from occurring to enforce security
properties.

® Supervisor : Partial observer (rzn) & controls only a subset of events (ZC).

® The supervisor can be viewed as a function (y) : returns a set of actions to be disabled after the
observation of a trace. = y(tr)={c1, c2}
e Permissiveness

Approach

General Framework for Opacity Reinforcement: HSOG

Notation: - Attacker Observation 3= {a}
- Supervisor Observation ¥ B b}

e Hyper Symbolic Observation Graph

m Nodes [super aggregates]: sets of aggregates (not single
states)

m Actionsin X, \ X, and
m Arcs are labeled with actions in X4

=> Representing state space in a condensed manner
= Alleviate the explosion state problem

How to obtain an HSOG?

1. Build the SOG of the system basedon X4 U X,

(=g (89

Zm\ZQ zm\za

4

L=

[. z\(zmura).]

a3

Notation: - Attacker Observation X4
- Supervisor Observation 5, o

How to obtain an HSOG?

2. Consider the obtained SOG as a LTS

3. Build the corresponding SOG based on ¥ only.

,’ RN // __________ ~. ST T T T T T T 5
I
: [() Z\(EmuZy) @J %@ ‘l : [. z\(szZQ)‘] :
: a0 a2 : ! a3 :
I 1 ' /
1 zm \za f T T T TTmmssm=
I ! I
[@—© :
I al I
\ / \ /
S . e e e D __ / S . e e e e e D2 4
HSOG opaque € NONE of its aggregates is Notation: - Attacker Observation 2

included in the secret - Supervisor Observation =, 10

Approach: How it works

Step 3
Step 2 Enforce the opacity
Step 1 P .
Check the condition of
On-the-fly HSOG opacity violation
Construction

— Abstraction of the state _
space according to the — A super-aggregate [node] is

— Backtracking + disable the
attacker's observation totally included in the secret? %

last controllable event 11

General Framework for Opacity Reinforcement: hsoc example

Attacker Observation X, ={a}
Supervisor Observation 5, ={b,c}
Supervisor controls > . CXm ={c}
- 2\N(EmuZy) ={u}

Notation:

Supervisor: y(ubuau)={c}

-~

I 1 super aggregates
C

D aggregates

O simple states

Application to a Web Service Use Case: Scenario Description

63
failure
update
e B2B (business-to-business) e-commerce delet
e Supply chain relationship between: faiy
(@) a car dealer auth /-\ access cred_com etrieve ¥—~Success
— 3 4 5
O a manufacturer @ 2 = - S =
O a part supplier log supplier .
0.
@ acc_car._service @ acc_inventory @ check_inventory ®/order @ request2 @
& @ :
lconf_request
) 9 . requestl fail @
Attacker’s observation={access, acc_car_service, conf, dec} . success
@ s_not_found fail @ cel | @ @
Secret states={4,42,43,41,6,61,918,} ’

Supervisor’s observation={log_supplier, acc_inventory, parts_not_found}
Supervisor’s control={log_in, order, request1, request2, conf_request}

Labelled Transition System representing the case study

13

Application to a Web Service Use Case:

cred comf'\retrleve

Super aggregate S secret??

e Supervisor:

Y()={ conf_request }

success -
a11

ts_not_fo .. fail :.Cance]@j

AR o T L

14

Developed Tool: EelJSTs)
e General Opacity Supervision

A tool to reinforce the opacity of https://depot.lipn.univ-paris13.fr/gosup/gosup
DESs.
Open source.

[README.md

General Framework Opacity Supervision

GoSup
e Input:

(G)eneral Framework for (O)pacity (Sup)ervision using the (S)ymbolic (O)bservation (G)raph, a C/C++ tool that allows to enhance opacity of a
model.

The system [PNML file]

Description

The confidential information [set
of states]
The observable behaviour of the Dependencies
system [set of states] - cmke
The desired supervisor : Building
- What to ContrOI « cd gosup && mkdir build && cd build
m What to observe ——
[OUtpUt: + cmake ~build.
o Supervision function — what Testing
aCtionS to enable /dl Sabl e /qos arg arg specifies the name of the model to enforce its opacity. Three files has to be provided :

This repository hosts the experiments and results for our general approach to supervise the opacity of Discrete event Systems (DES). We
develop a new version of the SOG and is called Hyper Symbolic Observation Graph (H-SOG for short).

« git clone —recursive git@depot.lipn.univ-paris13.fr:gosup/gosup.git

« arg.xml: file specifying the model
« arg.sec: file specifying secret states
« arg.obs: file specifying observable transitions resp. for supervisor and attacker, and controllable transitions

ConCI USion e Proposed a GENERAL and

REDUCED-COST algorithm —
reinforce the opacity based on a novel
graph called HSOG.

A B C
” e ON-THE-FLY computation of the
supervisor [performed while

abstracting the system).

e Prove that the obtained supervisor

Why's next? language K is controllable, observable,
supremal, ensures the opacity.

- Quantifying the opacity property
- Modular systems e Use case sample: security of a B2B

- More attackers e-commerce application.

16

Thank you for your attention

18

[1] Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a symbolic and
abstraction-based model checker. In Automated Technology for Verification and Analysis ATVA,

volume 3299 of Lecture Notes in Computer Science, pages
196-210. Springer, 2004.

Preliminaries: Verifying the opacity using the SOG

\,'
(m

confirm
O
empty
isCoffeeEmpty
O

notEmpty
20

Hh
o
f—

General Framework for Opacity Reinforcement: approacn

® Define the supervisor's behavior through a supervision functiony.
Prove that the obtained supervisor language K is
o controllable
o observable
o supremal
o ensures the opacity.
e Propose an algorithm based on an on-the-fly construction of a new version of
the SOG! called Hyper Symbolic Observation Graph (HSOG)

21

Developed Tool:
GoSup

General Opacity Supervision

https://depot:ipn.univ-paris13.fr/gosup/gosup

22

Application to a Web Service Use Case: SOG of the use case

cred_com _~retrieve

3

cc mve:é check_lnventory

@ success
5 : a11
reques
=)

SOG of the use case 23

