
General Framework for
Opacity Supervision
Nour Elhouda SOUID & Kais Klai

{souid, kais.klai}@lipn.univ-paris13.fr

LIPN Research Lab
University Sorbonne Paris Nord

23 March 2022

Outline
- Introduction
- Background
- Proposed Approach
- Web-Service Use Case
- Developed Tool
- Conclusion & Perspectives

2

- Vulnerable systems used daily
- The severity of the damages caused by recent attacks (ransomware1, Deny of Service2).

→ In this context, formal methods appear as a reliable technique to model systems and verify their security
properties⇒ information flow

- Opacity: a malicious third party is able to deduce that the system is in a secret state?

3

Motivation: Cybersecurity

● 1: (e.g., TeslaCrypt in 2015, WannaCry in 2017)
● 2: (e.g., the MiraiKrebs, OVH DDoS in 2016)

4

Preliminaries: The Opacity Property

● Defined w.r.t secret predicate (a set of secret states/ runs) & an
observer considered as an attacker.

● The predicate φ is opaque if no attacker can ever conclude from its
provided interface (observation) that the current run r of the system
satisfies φ (r |= φ).

● Formal Definition : ∀r ∈ L(T) such that r |= φ, there exists r’ ∈ L(T)
such that (r ~ r’) ∧ (r ‘⊭ φ)

Opaque system !

Attacker observation= {a, b}

Preliminaries: Symbolic Observation Graph (SOG)

5

● Deterministic graph where each node is a set of states linked

by unobservable actions and each arc is labeled with an

observable action.

● Nodes of the SOG are called aggregates→ managed efficiently

using decision diagram techniques

● Complexity?

● SOG opaque ⇔ NONE of its aggregates is included in the

secret opaque systems

Verifying the opacity→ State explosion problem
⇒ regroup states into "aggregates" ⇒ SOG

Preliminaries: Supervisory Control
Background (SCT)

● A formal framework for modeling and control of Discrete Event Systems (DESs).

● Objective: synthesize a supervisor → can prevent some actions from occurring to enforce security
properties.

● Supervisor : Partial observer (Σ) & controls only a subset of events (Σ).
● The supervisor can be viewed as a function (γ) : returns a set of actions to be disabled after the

observation of a trace. ⇒ γ(tr)={c1, c2}
● Permissiveness

6

m c

Approach

Reinforcing the opacity of a (DES) from
the SCT perspective

Suggest a novel methodology to
synthesize a maximal supervisor

→ restricts the behavior without any
hypothesis on the relationship between
the attacker and the supervisor
observations.

7

General Framework for Opacity Reinforcement: HSOG

● Hyper Symbolic Observation Graph

■ Nodes [super aggregates]: sets of aggregates (not single
states)

■ Actions in and
■ Arcs are labeled with actions in .

8

Notation: - Attacker Observation = { a }
 - Supervisor Observation = { b }

A0

A1

 ⇒ Representing state space in a condensed manner
⇒ Alleviate the explosion state problem

How to obtain an HSOG?

9

1. Build the SOG of the system based on

Notation: - Attacker Observation
- Supervisor Observation

How to obtain an HSOG?

10

2. Consider the obtained SOG as a LTS

3. Build the corresponding SOG based on only.

Notation: - Attacker Observation
- Supervisor Observation

HSOG opaque ⇔ NONE of its aggregates is

included in the secret

Approach: How it works

Step 1
On-the-fly HSOG

Construction

Step 2
Check the condition of
opacity violation

Step 3
Enforce the opacity

11

→ Abstraction of the state
space according to the
attacker's observation

→ A super-aggregate [node] is
totally included in the secret?

→ Backtracking + disable the
last controllable event

General Framework for Opacity Reinforcement: HSOG Example

⇒ Double abstraction: representing state space in a condensed manner
⇒ Alleviate the explosion state problem

12

Notation: - Attacker Observation ={ a }
- Supervisor Observation ={ b, c }
- Supervisor controls ={ c }
- ={ u }

Supervisor: γ(u b u a u) = { c }

A0 A1

A2

0 1
7

32

54
6 7

2

a0

a1

a2 a3

a4

u

u

u

u
u

a

a
b c

 super aggregates

 aggregates

 simple states

Application to a Web Service Use Case: Scenario Description

● B2B (business-to-business) e-commerce
● Supply chain relationship between:

○ a car dealer
○ a manufacturer
○ a part supplier

13

Labelled Transition System representing the case study

● Attacker’s observation={access, acc_car_service, conf, dec}
● Secret states={4,42,43,41,6,61,918,}
● Supervisor’s observation={log_supplier, acc_inventory, parts_not_found}
● Supervisor’s control={log_in, order, request1, request2, conf_request}

Application to a Web Service Use Case: Supervision

14

γ(ε)={ conf_request }

● Supervisor:

Super aggregate ⊆secret??

GoSup
General Opacity Supervision

● Input:
○ The system [PNML file]
○ The confidential information [set

of states]
○ The observable behaviour of the

system [set of states]
○ The desired supervisor :

■ What to control
■ What to observe

● Output:
○ Supervision function → what

actions to enable/disable

15

- C++ language based tool
- A tool to reinforce the opacity of

DESs.
- Open source.

Developed Tool:

https://depot.lipn.univ-paris13.fr/gosup/gosup

Conclusion ● Proposed a GENERAL and
REDUCED-COST algorithm →
reinforce the opacity based on a novel
graph called HSOG.

● ON-THE-FLY computation of the
supervisor [performed while
abstracting the system].

● Prove that the obtained supervisor
language K is controllable, observable,
supremal, ensures the opacity.

● Use case sample: security of a B2B
e-commerce application.

16

Why’s next?
- Quantifying the opacity property

- Modular systems
- More attackers

Thank you for your attention

17

18

19

[1] Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a symbolic and
abstraction-based model checker. In Automated Technology for Verification and Analysis ATVA,
volume 3299 of Lecture Notes in Computer Science, pages
196–210. Springer, 2004.

20

Preliminaries: Verifying the opacity using the SOG

21

General Framework for Opacity Reinforcement: Approach

● Define the supervisor's behavior through a supervision function γ.

● Prove that the obtained supervisor language K is

○ controllable

○ observable

○ supremal

○ ensures the opacity.

● Propose an algorithm based on an on-the-fly construction of a new version of

the SOG1 called Hyper Symbolic Observation Graph (HSOG)

Developed Tool:
GoSup

22

General Opacity Supervision
https://depot.lipn.univ-paris13.fr/gosup/gosup

Application to a Web Service Use Case: SOG of the use case

23SOG of the use case

