Semantic preservation of constant-time policies
during compilation

Sandrine Blazy

Wi @ @sIRISA Leeaa

joint work with Gilles Barthe, Benjamin Grégoire, Remi Hutin,
Vincent Laporte, David Pichardie, Alix Trieu

GT MFS, Fréjus, 2022-03-21

Information-flow policies for side-channel leakages

* Observational non-interference: observing program leakage A
. . . . P,oc—> o
during execution does not reveal any information about secrets

B ————

- Indistinguishability property (o, ¢'): share public values, but may differ on
secret values

4
P,o, — o

T

Information-flow policies for side-channel leakages

Cryptographic constant-time Constant-resource
..,
1,060 >1,0
Leakages: boolean guards and Leakages: amount of resources
memory accesses consumed
CompCert C compiler Toy language, basic optimisations
Challenges: Challenges:
* reuse of correctness proofs » find the relevant security policy
* proof scalability * need to modify the compiler

Part one: cryptographic constant-time

Cryptographic constant-time programming

-Leakage: ¢ :=¢e|guardb|readav|writeav

signed x, unsigned y, bool secret)
return x; }

unsigned not constant ti
{ 1f (secret) return y;

W'

unsigned constant timel (unsigned x, unsigned y, bool secret)
{ return x + (y - X) * secret; }

e e
unsigned constant time2 (unsigned x, unsigned y, bool secret)

{ return x © ((y ©~ X) & (-(unsigned)secret)); }

L — e ——————— RS

* There are cryptographic constant-time implementations of many
cryptographic algorithms: AES, DES, RSA, etc.

Cryptographic constant-time: static verification

» Several verification tools have been built and used for checking that popular
libraries follow the cryptographic constant-time discipline.

» But checking low-level implementations is tricky. It makes:

- the analysis work harder (e.g. alias analysis),

» the results of the analysis difficult to understand for programmers.

 Verification at source level is achievable, but it needs to be combined with a
secure compiler.

I,
VP, constantTime(P) — constantTime(compile(P))

Compilers vs. cryptographic constant-time policy

unsigned not constant time(unsigned x, unsigned y, bool b)

{
if (b) return y;

else return x;

unsigned constant time 1(unsigned x, unsigned y, bool b)

{

return x + (y - X) * b;

unsigned constant time 2(unsigned x, unsigned y, bool b)

{

A A

return x ((y ©~ x) & (-(unsigned)b));

o o 1 B W N =

22
23
24

not constant time: # @not_ constant time

leal 4(%esp), %eax

movl (%eax), %eax
retl

.LBBO 1:
leal 8(%esp), %eax
movl (%eax), %eax
retl

constant : # @Qconstant time 1

leal 4(%esp), %eax

movl (%eax), %eax
retl
.LBB1 1:
leal 8(%esp), %eax
movl (%eax), %eax
retl
constant time 2: # @constant_ time 2

movl , %ecx

C' E Output (0/0) x86-64 clang (trunk) § - 978ms (14804B)

R ————————mmmmmm—nmN—G—y

Compilers vs. cryptographic constant-time policy

— 1 main:
2 ush rb
int main() { = =
, 3 mov rbp, rsp
unsigned long long Xx;
4 movsd xmmO, QWORD PTR [rbp-8]
double y; .
. 5 D PTR .LCO[rip]
X = (unsigned long long)y; ¢
return 0;
) 7 movsd xmm0, QWORD PTR [rbp-8]
8 cvttsd2si rax, xmm0
9 mov QWORD PTR [rbp-16], rax
10 jmp .L3
11 L2:
12 movsd xmmO, QWORD PTR [rbp-8]
13 movsd xmml, QWORD PTR .LCO[rip]
14 subsd xmm(0, xmml
15 cvttsd2si rax, xmm0
16 mov QWORD PTR [rbp-16], rax
17 movabs rax, -9223372036854775808
18 Xor QWORD PTR [rbp-16], rax
19 .L3:
20 mov rax, QWORD PTR [rbp-16]
21 mov QWORD PTR [rbp-16], rax
22 mov eax, 0
23 pop rbp
24 ret

C B Output (0/0) x86-64 gcc 8.3 § - 849ms (12804B)

Cryptographic constant-time attacks

Lucky Thirteen: Breaking the TLS and DTLS Record Protocols

Nadhem J. AlFardan and Kenneth G. Paterson®
Information Security Group

Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK Lu cky Microseconds: A Timing Attack on Amazon’s s2n

€10¢.dR8S

{nadhem.alfardan.2009, kenny.paterson } @rhul.ac.uk IT]]
— Implementation of TLS
27th February 2013 3
(_? Martin R. Albrecht* and Kenneth G. Paterson™
Abstract 1.0 [31], which roughly matches TLS 1.1 and DTLS 1.2 [3:“<< , .
which aligns with TLS 1.2. © _ Information Security Group
The Transport Layer Security (TLS) protocol aims to pro- _ e Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
‘ port Layer . i1y p? _ p Both TLS and DTLS are actually protocol suites, rather th; {martin.albrecht, kenny.paterson}@rhul.ac.uk

vide confidentiality and integrity of data in transit across un- single protocols. The main component of (D)TLS that co 8 ’
trusted networks. TLS has become the de facto secure proto- cerns us here is the Record Protocol, which uses symmetr B
col of choice for Internet and mobile applications. DTLS is key cryptography (block ciphers, stream ciphers and MAC ¢ D
a variant of TLS that is growing in importance. In this paper, gorithms) in combination with sequence numbers to build a s Abstract. s2n is an implementation of the TLS protocol that was released in late June 2015
we present distinguishing and plaintext recovery aitacks against cure channel for transporting application-layer data. Other m by Amazon. It is implemented in around 6,000 lines of C99 code. By comparison, OpenSSL
TLS and DTLS. The attacks are based on a delicate timing anal- jor components are the (D)TLS Handshake Protocol, which needs around 70,000 lines of code to implement the protocol. At the time of its release, Amazon
ysis of decryption processing in the two protocols. ‘We'include responsible for authentication, session key establishment ar announced that s2n had undergone three external security evaluations and penetration tests.
experimental results demonstrating the feasibility of the attacks ciphersuite negotiation, and the TLS Alert Protocol, which cz We show that, despite this, s2n — as initially released — was vulnerable to a timing attack in
in realistic network environments for several difjerent imple- ries error messages and management traffic. Setting aside de the case of CéC—mode ciplr,lersuites which could be extended to complete plaintext recovery in
s o WIS Chd IS, sieiling die Uethng il icated authenticated encryption algorithms (which are yet some settings. Our attack has tWO’COIIlpOIleIltS. The first part is a novel variant of the Lucky
UERRRY We provide countermeasures Jor the atiacks. see widespread support in TLS or DTLS implementations), 13 attack that works even though protections against Lucky 13 were implemented in s2n. The
Finally, we discuss the wider implications of our attacks for the (D)YTLS Record Protocol uses a MAC-Encode-Encrypt (ME second part deals with the randomised delays that were put in place in s2n as an a,ddz'z.fz'onal
cryptographic design used by TLS and DTLS. construction. Here, the plaintext data to be transported is fi1 i

countermeasure to Lucky 13. Our work highlights the challenges of protecting implementations
| against sophisticated timing attacks. It also illustrates that standard code audits are insufficient
to uncover all cryptographic attack vectors.

Keywords TLS, CBC-mode encryption, timing attack, plaintext recovery, Lucky 13, s2n.

CompCert

nduction
ata-flow

tlnuations

form al Sem antlcs sall- Step oo

intermediate-languagé ﬁﬁfﬂpf?ntagmph
mtegers

Tl & f interpreter 0 ats
= erl Compllel‘ solver
control-Flow Simulation-proof

observable-events memory ﬁeim(;‘del

Pun—time val

The CompCert formally verified compiler

Proving semantic properties on realistic compilers requires a machine-checked proof

CompCert

- a moderately optimizing C compiler
» programmed and verified using the Coq proof assistant
» used in commercial settings and for software certification

CompCert’s main theorem states that the compiler

» preserves observational behaviors
* preserves memory safety

Nothing about side-channels attacks
e ——— R

11

Our contributions

e Make precise what preservation through compilation means for cryptographic
constant-time

¢ Provide a machine-checked proof that a mildly modified version of the
CompCert compiler preserves the cryptographic constant-time policy

e EXxplain how to turn an existing formally-verified compiler into a formally-verified
secure compiler

e Provide a proof toolkit for proving security preservation with simulation diagrams

12

CompCert compiler: 10 languages, 17 passes

Com

Optimisations: constant prop., CSE, talil calls,
Q (LCM), (software pipelining)
CFG construction
expr. decomp. _
[RTL }M[CminorSel j

register
allocation (IRC)

linearisation
[LTL jofth—eCFG>[LTLin j

Operational semantics
[ASM

s L s S Lx g

/
S — o

S Lng S Lt

t liminati :
ype elimination [Cé#minor j

stack allocation
of «&»variables

Instruction

selection ,
4—[Cminor j

(instruction scheduling)

spilling, reloading : D

calling conventions _
—_— Linear

layout of
stack frames

asm code

generation
oo ()

13

Proof methodology: forward simulation

Ingredients

* simulation relation &~ between source and target states

 measure m from source states to a well-founded set

source
state

*
*
*
*
*
*
4
*
*
‘0
*

or =5

*
*
*
*
*
*
*
| “
[| *
*
*
L
L 2
*
‘0
*

14

I

A CompCert compiler that
preserves cryptographic

constant-time £
formal-semantics=

ordered-types

ntermediate-languagé™"-,.,

1ntegers nerreler loats

" Verified-compiler™

control-flow Simulation-proof

observable-events memory i?igi‘mocedel

tlnuations

run-time-va.

Security policy: cryptographic constant-time
Defining leakages

{0 {1
(e,a) U true (p,0) I o
» We enrich the CompCert traces of events with leakages: £o-true - £,
. /
N (if (e){p}{p2}o) U o
- truth value of a condition,
» pointer representing the address of either a memory access or a called

function.

- We adapt the CompCert semantics and still note Z §’ the new judgement.

f
- Event erasure: from S — S’ we can extract

- the compile-only judgement S —t>00mp S’ and

- the leak-only judgement S —t>|eak A\

16

Security policy: cryptographic constant-time
Semantic preservation

- Indistinguishability property (S, S’): two initial states share the same values
for public inputs, but differ on the values of secret inputs

- P is constant-time secure w.r.t. ¢

Main theerem—(preséwaﬁen—ef—equtafgt-time security)

. . Y
Lel,d‘i be a safe Cllgh},source program ?hat |m:pimlecknsttq

G-assemblyprogram—P- >
an xe leak

If P is constant-time secure w.r.t. @, then sois P’.

17

Proving cryptographic constant-time preservation

- The involved semantics is the leak-only semantics — g k-

- Existing CompCert simulation diagrams deal with the compile-only semantics —¢omp.

» Our proof-engineering strategy is to benefit as much as possible from the proof scripts
of these diagrams.

Slightly modified CompCert el
forward simulation theorem

Slightly modified CompCert
forward simulation proof script

Constant-time preservation
theorem about —|ggk

18

Four proof technigques

Proof tractability

» Trade-off between generality and
proof tractability

» The first three are slight relaxations
of the classical forward diagram
and reuse existing scripts.

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

Generality

19

Proving cryptographic constant-time preservation
Method #1: leakage preservation

» Simplest situation: a program transformation preserves the trace of leakages

» Only need to prove the traditional CompCert’s forward simulation diagram on —

* This forward simulation implies behaviour preservation.

60/ S() I*eak
S/ - [K
0 L leak
- oK
0 leak

20

Proving cryptographic constant-time preservation
Method #2: leakage erasing simulation

» Some optimisations erase leakages.

* They are still constant-time preserving as long as their decision to erase this
information does not depend on secret values.

» We slightly adapt the forward-simulation diagram.

must predict the
number of steps at

target level

The previous proof script

requires very few changes!

and n = 0 implies 0 < m(S’) < m(S)
and 7 =1

g — 0 or (T = € and 7 is leak only)

21

Method #3: Leak-transforming by
memory-injection simulation

- Some transformations alter the memory layout.

» Leaky pointers are not preserved.

- Still, there exists a leakage transformation that maps the source leakage trace
to the target leakage trace.

memory
injection

make explicit how
memory injections evolve

memory injection
NN,

leaking pointers are
Source memory transformed with 1

22

A palette of proof methods

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

Compiler pass
Cshmgen
Cminorgen
Selection
RTLgen
Tailcall

Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanupLabels
Debugvar
Stacking
Asmgen

Diagram used

Explanation on the pass
Type elaboration, simplification of control

Stack allocation

Recognition of operators and addr. modes

Generation of CFG and 3-address code

Tailcall recognition

Function inlining

Renumbering CFG nodes

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

23

A palette of proof methods

Trace preservation AN
Leak erasing

Trace transformation

CT cube diagram

Compiler pass
Cshmgen
Cminorgen
Selection
RTLgen
Tailcall

Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanuplLabels
Debugvar
Stacking
Asmgen

Diagram used
Trace preservation

Explanation on the pass
Type elaboration, simplification of control

Stack allocation

Trace preservation
Trace preservation

Recognition of operators and addr. modes

Generation of CFG and 3-address code

Tailcall recognition

Trace preservation

Function inlining

Renumbering CFG nodes

Trace preservation
Trace preservation

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

24

A palette of proof methods

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17
5/17

Compiler pass
Cshmgen
Cminorgen
Selection
RTLgen
Tailcall

Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanuplLabels
Debugvar
Stacking
Asmgen

Diagram used
Trace preservation

Explanation on the pass
Type elaboration, simplification of control

Stack allocation

Leak erasing
Trace preservation
Trace preservation

Recognition of operators and addr. modes

Generation of CFG and 3-address code

Tailcall recognition

Trace preservation

Function inlining

Renumbering CFG nodes

Leak erasing

Leak erasing

Leak erasing

Leak erasing

Trace preservation
Trace preservation

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

25

A palette of proof methods

Trace preservation ESJAN4

Leak erasing 5/17

Trace transformation ESJa4

CT cube diagram

Compiler pass
Cshmgen
Cminorgen
Selection
RTLgen
Tailcall

Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanuplLabels
Debugvar
Stacking
Asmgen

Diagram used
Trace preservation

Explanation on the pass
Type elaboration, simplification of control

Trace transformation

Stack allocation

Leak erasing
Trace preservation
Trace preservation

Recognition of operators and addr. modes

Generation of CFG and 3-address code

Tailcall recognition

Trace transformation
Trace preservation

Function inlining

Renumbering CFG nodes

Trace transformation

Leak erasing

Leak erasing

Leak erasing

Leak erasing

Trace preservation
Trace preservation

Trace transformation

Trace transformation

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

26

A palette of proof methods

Trace preservation ESJAN4

Leak erasing 5/17

Trace transformation ESJa4
1/17

CT cube diagram

G.Barthe, B. Grégoire, and V. Laporte.
Secure Compilation of Side-Channel
Countermeasures: The Case of
Cryptographic Constant-Time. CSF 2018.

T —

*

Compiler pass
Cshmgen
Cminorgen
Selection
RTLgen
Tailcall

Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanuplLabels
Debugvar
Stacking
Asmgen

Diagram used
Trace preservation

Explanation on the pass
Type elaboration, simplification of control

Trace transformation

Stack allocation

Leak erasing
Trace preservation
Trace preservation

Recognition of operators and addr. modes

Generation of CFG and 3-address code

Tailcall recognition

Trace transformation
Trace preservation

Function inlining

Renumbering CFG nodes

Trace transformation

Leak erasing

Leak erasing

Leak erasing

Leak erasing

CT cube diagram
Trace preservation
Trace preservation

Trace transformation

Trace transformation

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

27

Part two: constant resource

The constant-resource (CR) policy

Relax the cryptographic contant-time policy to allow balanced branches

Leakage: amount of resources consumed during an execution

Every construct of the language consumes a constant amount of resources.

Example of CR-secure program

1f (secret)

a*b;
6 accesses to variables, (a*b)+c+d; }
2 additions,
2 multiplications,
p atb;

2 assignments

(a+b)*c*d; }

——————

29

The constant-resource policy

- C1t+ey
la, lb, 01 > 01 Imp ies

with qﬂ(gl, 62) L ;r /
. Lﬂ2++fé , fl +f —fz"“l‘fz
la, lb, 02 > 02

The non-cancelling property of leakages fails for constant-resource programs.
O+ +0=0,++0, = =0, A0 =7, when ||| =|¢5|and |[[| = |[]

“_

30

Constant-resource policy and compilation

if (secret) Preserving the constant-resource policy
{ x = a*b; requires to define some security-enhancing
vy = (a*b)+c+d; } program transformations

else
{ x = at+b;
y = (atb)*c*d; }

R ——— s
S
3 tl — Kmult Kvar
0p)
ol P and . ¢
g 1l (secret) t2 _ Kadd_l_ Kvar = (secret) [= de(tl, tz)
{ 6('[:1); LRSS { 6(t]-_t);

X = a*b;
y = xX+c+d; }

X = a*b;
y = x+c+d; }

1f (secret)
{ X = a*b;

v = x+c+d; } padding else padding else
else insertion { 0(t2); minimisation { 0(t2-t);
{ X = atb; X = atb; X = atb;
y = Xx*c*d; } y = X*c*d; } y = X*c*d; } 31

B aans T e — et tessEG—_— R - s Tt

Constant-resource policy and compilation

Balancing all branches is not realistic
1f (public) {

{ ..}
Use of an atomic annotation else
{ ..}
* Introduced by a previous static analysis atomic ({
if (secret)
- allows for padding instructions U)
else
{ .. }

32

Conclusion

Reducing security to safety for
» expressing two policies to protect a program against timing attacks

» proving using Coq that the policies are preserved through
compilation

Follows previous uses of instrumented semantics

- CompCertSFl: a sandboxing transformation ensures that an
untrusted module cannot escape its dedicated isolated address
space

33

Perspectives

Cryptographic constant-time

Extend CompCert with support for
vectorization instructions

Combine CT-CompCert with
verified C cryptographic programs

VST, HACL®

Constant-resource

Experimental validation

Allow memory accesses in the
atomic parts

Towards a more realistic language
with loops, functions, and
Instructions with variable resource
consumption

34

Further reading

- G.Barthe, S.Blazy, R.Hutin, D.Pichardie. Secure compilation of Constant-
Resource Programs. CSF 2021.

- G.Barthe, S.Blazy, B.Grégoire, R.Hutin, V.Laporte, D.Pichardie, A.Trieu. Formal
Verification of a Constant-Time Preserving C Compiler. POPL 2020.

- S.Blazy, D.Pichardie, A.Trieu. Verifying Constant-Time Implementations by
Abstract Interpretation. Journal of Computer Security, 27(1), 2019.

* F.Besson, S.Blazy, A.Dang, T.Jensen, P.Wilke. Compiling Sandboxes:
Formally Verified Software Fault Isolation. ESOP 2019.

- G.Barthe, B. Grégoire, and V. Laporte. Secure Compilation of Side-Channel
Countermeasures: The Case of Cryptographic Constant-Time. CSF 2018.

35

Questions 7

36

