
Semantic preservation of constant-time policies 
during compilation

joint work with Gilles Barthe, Benjamin Grégoire, Rémi Hutin,       
Vincent Laporte, David Pichardie, Alix Trieu 

Sandrine Blazy

GT MFS, Fréjus, 2022-03-21 



Information-flow policies for side-channel leakages 
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•Observational non-interference: observing program leakage 
 during execution does not reveal any information about secrets


• Indistinguishability property : share public values, but may differ on 
secret values

φ(σ, σ′ )

P, σ ℓ σ′ 

P, σ1
ℓ1 σ′ 1

P, σ2
ℓ2 σ′ 2

with φ(σ1, σ2) implies ℓ1 = ℓ2



Information-flow policies for side-channel leakages 
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Cryptographic constant-time 

Leakages: boolean guards and 
memory accesses


CompCert C compiler


Challenges: 


• reuse of correctness proofs 


• proof scalability

Constant-resource 

Leakages: amount of resources 
consumed


Toy language, basic optimisations


Challenges: 


• find the relevant security policy 


• need to modify the compiler

i, σ ℓ i′ , σ′ 



Part one: cryptographic constant-time



Cryptographic constant-time programming 
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• Leakage:       ::= ε | guard b | read a v | write a v


• There are cryptographic constant-time implementations of many 
cryptographic algorithms: AES, DES, RSA, etc.

ℓ

unsigned not_constant_time (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned constant_time1 (unsigned x, unsigned y, bool secret)
{ return x + (y - x) * secret; }

unsigned constant_time2 (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }



Cryptographic constant-time: static verification
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• 	Several verification tools have been built and used for checking that popular 
libraries follow the cryptographic constant-time discipline. 

•But checking low-level implementations is tricky. It makes:


• the analysis work harder (e.g. alias analysis),


• the results of the analysis difficult to understand for programmers. 

• Verification at source level is achievable, but it needs to be combined with a 
secure compiler.

∀P, 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(P) 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(𝖼𝗈𝗆𝗉𝗂𝗅𝖾(P))
?



Compilers vs. cryptographic constant-time policy 
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Compilers vs. cryptographic constant-time policy 
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Cryptographic constant-time attacks 
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The CompCert formally verified compiler

Proving semantic properties on realistic compilers requires a machine-checked proof


CompCert

• a moderately optimizing C compiler

• programmed and verified using the Coq proof assistant

• used in commercial settings and for software certification


CompCert’s main theorem states that the compiler

• preserves observational behaviors 

• preserves memory safety
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 Nothing about side-channels attacks



Our contributions

• Make precise what preservation through compilation means for cryptographic 
constant-time	


• Provide a machine-checked proof that a mildly modified version of the 
CompCert compiler preserves the cryptographic constant-time policy


• Explain how to turn an existing formally-verified compiler into a formally-verified 
secure compiler


• Provide a proof toolkit for proving security preservation with simulation diagrams
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CompCert compiler: 10 languages, 17 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

type elimination


spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

asm code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

(instruction scheduling)
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Operational semantics

S t S′ S t * S′ 

S t n S′ S t + S′ S t ∞
x86



Proof methodology: forward simulation

Ingredients


• simulation relation  between source and target states≈
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•measure m from source states to a well-founded set



A CompCert compiler that 
preserves cryptographic 
constant-time



Security policy: cryptographic constant-time 
Defining leakages

• 	We enrich the CompCert traces of events with leakages: 

• truth value of a condition, 


• pointer representing the address of either a memory access or a called 
function. 

•We adapt the CompCert semantics and still note  the new judgement.


•Event erasure: from  we can extract


• the compile-only judgement  and


• the leak-only judgement .

S t S′ 

S t S′ 

S t
𝖼𝗈𝗆𝗉 S′ 

S t
𝗅𝖾𝖺𝗄 S′ 
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Security policy: cryptographic constant-time 
Semantic preservation

• Indistinguishability property : two initial states share the same values 
for public inputs, but differ on the values of secret inputs


•  is constant-time secure w.r.t. 

φ(S, S′ )

P φ
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Main theorem (preservation of constant-time security) 
Let  be a safe Clight source program that is compiled into 
an x86 assembly program . 
If  is constant-time secure w.r.t. , then so is .

P
P′ 

P φ P′ 

s′ 

s
φ

t

t′ 

*

*
t t′ =impliesleak
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Proving cryptographic constant-time preservation 

• The involved semantics is the leak-only semantics .


• Existing CompCert simulation diagrams deal with the compile-only semantics .


•Our proof-engineering strategy is to benefit as much as possible from the proof scripts 
of these diagrams.

𝗅𝖾𝖺𝗄

𝖼𝗈𝗆𝗉
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Standard CompCert forward 
simulation theorem about 

comp

Standard CompCert forward 
simulation proof script

Slightly modified CompCert 
forward simulation theorem 

about 

Slightly modified CompCert 
forward simulation proof script Constant-time preservation 

theorem about leak

implies
generic theorem

implies
generic theorem



Four proof techniques 

• Trade-off between generality and 
proof tractability


• The first three are slight relaxations 
of the classical forward diagram 
and reuse existing scripts.
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Trace preservation

Leak erasing

Trace transformation

CT cube diagram

Generality

Proof tractability



Proving cryptographic constant-time preservation 
Method #1: leakage preservation

•Simplest situation: a program transformation preserves the trace of leakages


•Only need to prove the traditional CompCert’s forward simulation diagram on 


• This forward simulation implies behaviour preservation.

→
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Proving cryptographic constant-time preservation 
Method #2: leakage erasing simulation

•Some optimisations erase leakages.


• They are still constant-time preserving as long as their decision to erase this 
information does not depend on secret values.


•We slightly adapt the forward-simulation diagram.
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The previous proof script 
requires very few changes!t

S

≈n

S’

σ τ n
σ’

≈n’
≈0

and n = 0 implies 0 ≤ m(S’) < m(S)

must predict the 
number of steps at 

target level

and τ = t

or (  and  is leak only)τ = ε t



Method #3: Leak-transforming by  
memory-injection simulation 

•Some transformations alter the memory layout.

22
source memory target memory

• Leaky pointers are not preserved. 


•Still, there exists a leakage transformation that maps the source leakage trace 
to the target leakage trace. 

memory injection

τ n
σ’

≈n′ ,F(S,σ,ι)

t
S S’

σ

≈ n, ι

memory 
injection

make explicit how 
memory injections evolve

leaking pointers are 
transformed with ι

and n = 0 implies 0 ≤ m(S’) < m(S)

and τ = map ι t



A palette of proof methods
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Compiler pass Diagram used Explanation on the pass
Cshmgen Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Generation of CFG and 3-address code
Tailcall Tailcall recognition
Inlining Function inlining
Renumber Renumbering CFG nodes
ConstProp Constant propagation 
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Removal of unreferenced labels
Debugvar Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code 

Trace preservation

Leak erasing

Trace transformation

CT cube diagram



A palette of proof methods
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Trace preservation

Leak erasing

Trace transformation

CT cube diagram
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Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Constant propagation 
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code 



A palette of proof methods
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Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Constant propagation 
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code 

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17



A palette of proof methods
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Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Trace transformation
 Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation
 Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation
 Constant propagation 
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling 
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Trace transformation
 Laying out stack frames
Asmgen Trace transformation Emission of assembly code 

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17

5/17



A palette of proof methods
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Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Trace transformation
 Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation
 Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation
 Constant propagation 
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling 
Linearize CT cube diagram Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Trace transformation
 Laying out stack frames
Asmgen Trace transformation Emission of assembly code 

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17

5/17

1/17

G.Barthe, B. Grégoire, and V. Laporte. 
Secure Compilation of Side-Channel 
Countermeasures: The Case of 
Cryptographic Constant-Time. CSF 2018.



Part two: constant resource



The constant-resource (CR) policy

Relax the cryptographic contant-time policy to allow balanced branches


Leakage: amount of resources consumed during an execution


Every construct of the language consumes a constant amount of resources.


Example of CR-secure program
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if (secret)  
   { x = a*b;  
     y = (a*b)+c+d; } 
else 
   { x = a+b;
     y = (a+b)*c*d; }

6 accesses to variables, 
2 additions,  

2 multiplications,  
2 assignments

6 accesses to variables, 
2 additions,  

2 multiplications,  
2 assignments



The constant-resource policy

The non-cancelling property of leakages fails for constant-resource programs.
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  when and ℓ1 + +ℓ′ 1 = ℓ2 + +ℓ′ 2 ⟹ ℓ1 = ℓ2 ∧ ℓ′ 1 = ℓ′ 2 |ℓ1 | = |ℓ2 | | l′ 1 | = | l′ 2 |

ia; ib, σ1
ℓ1++ℓ′ 1 σ′ 1

with φ(σ1, σ2)
implies 
ℓ1 + +ℓ′ 1 = ℓ2 + +ℓ′ 2

ia; ib, σ2
ℓ2++ℓ′ 2 σ′ 2



Constant-resource policy and compilation
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if (secret)  
   { x = a*b;  
     y = (a*b)+c+d; } 
else 
   { x = a+b;
     y = (a+b)*c*d; }

if (secret)  
   { x = a*b;  
     y = x+c+d; } 
else 
   { x = a+b;
     y = x*c*d; }

if (secret)  
   { 𝛅(t1);  
     x = a*b;  
     y = x+c+d; } 
else 
   { 𝛅(t2);  
     x = a+b;
     y = x*c*d; }

if (secret)  
   { 𝛅(t1-t);  
     x = a*b;  
     y = x+c+d; } 
else 
   { 𝛅(t2-t);  
     x = a+b;
     y = x*c*d; }

t = max(t1, t2)

 
and 
t1 = Kmult + Kvar

t2 = Kadd + Kvar

optim
isation

minimisation
paddingpadding

insertion

Preserving the constant-resource policy 
requires to define some security-enhancing 
program transformations



Constant-resource policy and compilation

Balancing all branches is not realistic


Use of an atomic annotation


• introduced by a previous static analysis


• allows for padding instructions
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if (public) {
   { … } 
else 
   { … }
atomic {
   if (secret)  
      { … } 
   else 
   { … }
}
…

atomic {
   if (secret)  
      { … } 
   else 
   { … }
}



Conclusion

Reducing security to safety for 


• expressing two policies to protect a program against timing attacks 


• proving using Coq that the policies are preserved through 
compilation


Follows previous uses of instrumented semantics  

•  CompCertSFI: a sandboxing transformation ensures that an 
untrusted module cannot escape its dedicated isolated address 
space
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Perspectives
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Constant-resource 

Experimental validation


Allow memory accesses in the 
atomic parts


Towards a more realistic language 
with loops, functions, and 
instructions with variable resource 
consumption

Cryptographic constant-time 

Extend CompCert with support for 
vectorization instructions


Combine CT-CompCert with 
verified C cryptographic programs


• VST, HACL*
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Questions ?
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