
Semantic preservation of constant-time policies
during compilation

joint work with Gilles Barthe, Benjamin Grégoire, Rémi Hutin,
Vincent Laporte, David Pichardie, Alix Trieu

Sandrine Blazy

GT MFS, Fréjus, 2022-03-21

Information-flow policies for side-channel leakages

2

•Observational non-interference: observing program leakage 
 during execution does not reveal any information about secrets

• Indistinguishability property : share public values, but may differ on
secret values

φ(σ, σ′)

P, σ ℓ σ′

P, σ1
ℓ1 σ′ 1

P, σ2
ℓ2 σ′ 2

with φ(σ1, σ2) implies ℓ1 = ℓ2

Information-flow policies for side-channel leakages

3

Cryptographic constant-time

Leakages: boolean guards and
memory accesses

CompCert C compiler

Challenges:

• reuse of correctness proofs

• proof scalability

Constant-resource

Leakages: amount of resources
consumed

Toy language, basic optimisations

Challenges:

• find the relevant security policy

• need to modify the compiler

i, σ ℓ i′ , σ′

Part one: cryptographic constant-time

Cryptographic constant-time programming

5

• Leakage: ::= ε | guard b | read a v | write a v

• There are cryptographic constant-time implementations of many
cryptographic algorithms: AES, DES, RSA, etc.

ℓ

unsigned not_constant_time (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned constant_time1 (unsigned x, unsigned y, bool secret)
{ return x + (y - x) * secret; }

unsigned constant_time2 (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Cryptographic constant-time: static verification

6

• 	Several verification tools have been built and used for checking that popular
libraries follow the cryptographic constant-time discipline. 

•But checking low-level implementations is tricky. It makes:

• the analysis work harder (e.g. alias analysis),

• the results of the analysis difficult to understand for programmers. 

• Verification at source level is achievable, but it needs to be combined with a
secure compiler.

∀P, 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(P) 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(𝖼𝗈𝗆𝗉𝗂𝗅𝖾(P))
?

Compilers vs. cryptographic constant-time policy

7

Compilers vs. cryptographic constant-time policy

8

Cryptographic constant-time attacks

9

S&
P’2013 EuroC

rypt 2016

CompCert

The CompCert formally verified compiler

Proving semantic properties on realistic compilers requires a machine-checked proof

CompCert

• a moderately optimizing C compiler

• programmed and verified using the Coq proof assistant

• used in commercial settings and for software certification

CompCert’s main theorem states that the compiler

• preserves observational behaviors

• preserves memory safety

11

 Nothing about side-channels attacks

Our contributions

• Make precise what preservation through compilation means for cryptographic
constant-time	

• Provide a machine-checked proof that a mildly modified version of the
CompCert compiler preserves the cryptographic constant-time policy

• Explain how to turn an existing formally-verified compiler into a formally-verified
secure compiler

• Provide a proof toolkit for proving security preservation with simulation diagrams

12

CompCert compiler: 10 languages, 17 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

type elimination

spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

asm code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

(instruction scheduling)

13

Operational semantics

S t S′ S t * S′

S t n S′ S t + S′ S t ∞
x86

Proof methodology: forward simulation

Ingredients

• simulation relation between source and target states≈

14

σ’

≈

+t

S

≈

S’

σ

≈

ε

with 0 ≤ m(S’) < m(S)

or

S

≈

S’

σ

t

target
state

source
state

•measure m from source states to a well-founded set

A CompCert compiler that
preserves cryptographic
constant-time

Security policy: cryptographic constant-time
Defining leakages

• 	We enrich the CompCert traces of events with leakages:

• truth value of a condition,

• pointer representing the address of either a memory access or a called
function.

•We adapt the CompCert semantics and still note the new judgement.

•Event erasure: from we can extract

• the compile-only judgement and

• the leak-only judgement .

S t S′

S t S′

S t
𝖼𝗈𝗆𝗉 S′

S t
𝗅𝖾𝖺𝗄 S′

16

Security policy: cryptographic constant-time
Semantic preservation

• Indistinguishability property : two initial states share the same values
for public inputs, but differ on the values of secret inputs

• is constant-time secure w.r.t.

φ(S, S′)

P φ

17

Main theorem (preservation of constant-time security) 
Let be a safe Clight source program that is compiled into
an x86 assembly program . 
If is constant-time secure w.r.t. , then so is .

P
P′

P φ P′

s′

s
φ

t

t′

*

*
t t′ =impliesleak

leak

Proving cryptographic constant-time preservation

• The involved semantics is the leak-only semantics .

• Existing CompCert simulation diagrams deal with the compile-only semantics .

•Our proof-engineering strategy is to benefit as much as possible from the proof scripts
of these diagrams.

𝗅𝖾𝖺𝗄

𝖼𝗈𝗆𝗉

18

Standard CompCert forward
simulation theorem about

comp

Standard CompCert forward
simulation proof script

Slightly modified CompCert
forward simulation theorem

about

Slightly modified CompCert
forward simulation proof script Constant-time preservation

theorem about leak

implies
generic theorem

implies
generic theorem

Four proof techniques

• Trade-off between generality and
proof tractability

• The first three are slight relaxations
of the classical forward diagram
and reuse existing scripts.

19

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

Generality

Proof tractability

Proving cryptographic constant-time preservation
Method #1: leakage preservation

•Simplest situation: a program transformation preserves the trace of leakages

•Only need to prove the traditional CompCert’s forward simulation diagram on

• This forward simulation implies behaviour preservation.

→

20

S′ 0

≈

S0
≈

φ
t

leak*

t
leak*

?
= t

= t τ τ′ =τ

τ′

*

*leak

leak
σ′ 0

σ0φ

Proving cryptographic constant-time preservation
Method #2: leakage erasing simulation

•Some optimisations erase leakages.

• They are still constant-time preserving as long as their decision to erase this
information does not depend on secret values.

•We slightly adapt the forward-simulation diagram.

21

The previous proof script
requires very few changes!t

S

≈n

S’

σ τ n
σ’

≈n’
≈0

and n = 0 implies 0 ≤ m(S’) < m(S)

must predict the
number of steps at

target level

and τ = t

or (and is leak only)τ = ε t

Method #3: Leak-transforming by
memory-injection simulation

•Some transformations alter the memory layout.

22
source memory target memory

• Leaky pointers are not preserved.

•Still, there exists a leakage transformation that maps the source leakage trace
to the target leakage trace.

memory injection

τ n
σ’

≈n′ ,F(S,σ,ι)

t
S S’

σ

≈ n, ι

memory
injection

make explicit how
memory injections evolve

leaking pointers are
transformed with ι

and n = 0 implies 0 ≤ m(S’) < m(S)

and τ = map ι t

A palette of proof methods

2323

Compiler pass Diagram used Explanation on the pass
Cshmgen Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Generation of CFG and 3-address code
Tailcall Tailcall recognition
Inlining Function inlining
Renumber Renumbering CFG nodes
ConstProp Constant propagation
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling
Linearize Linearization of CFG
CleanupLabels Removal of unreferenced labels
Debugvar Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

A palette of proof methods

2424

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Constant propagation
CSE Common subexpression elimination
Deadcode Redundancy elimination
Allocation Register allocation
Tunneling Branch tunneling
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code

A palette of proof methods

2525

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Constant propagation
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Laying out stack frames
Asmgen Emission of assembly code

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17

A palette of proof methods

2626

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Trace transformation
 Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation
 Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation
 Constant propagation
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling
Linearize Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Trace transformation
 Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17

5/17

A palette of proof methods

2727

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Trace transformation
 Stack allocation
Selection Leak erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation
 Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation
 Constant propagation
CSE Leak erasing Common subexpression elimination
Deadcode Leak erasing Redundancy elimination
Allocation Leak erasing Register allocation
Tunneling Leak erasing Branch tunneling
Linearize CT cube diagram Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Trace transformation
 Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Trace preservation

Leak erasing

Trace transformation

CT cube diagram

6/17

5/17

5/17

1/17

G.Barthe, B. Grégoire, and V. Laporte.
Secure Compilation of Side-Channel
Countermeasures: The Case of
Cryptographic Constant-Time. CSF 2018.

Part two: constant resource

The constant-resource (CR) policy

Relax the cryptographic contant-time policy to allow balanced branches

Leakage: amount of resources consumed during an execution

Every construct of the language consumes a constant amount of resources.

Example of CR-secure program

29

if (secret)  
 { x = a*b;  
 y = (a*b)+c+d; }
else
 { x = a+b;
 y = (a+b)*c*d; }

6 accesses to variables,
2 additions,

2 multiplications,
2 assignments

6 accesses to variables,
2 additions,

2 multiplications,
2 assignments

The constant-resource policy

The non-cancelling property of leakages fails for constant-resource programs.

30

 when and ℓ1 + +ℓ′ 1 = ℓ2 + +ℓ′ 2 ⟹ ℓ1 = ℓ2 ∧ ℓ′ 1 = ℓ′ 2 |ℓ1 | = |ℓ2 | | l′ 1 | = | l′ 2 |

ia; ib, σ1
ℓ1++ℓ′ 1 σ′ 1

with φ(σ1, σ2)
implies
ℓ1 + +ℓ′ 1 = ℓ2 + +ℓ′ 2

ia; ib, σ2
ℓ2++ℓ′ 2 σ′ 2

Constant-resource policy and compilation

31

if (secret)  
 { x = a*b;  
 y = (a*b)+c+d; }
else
 { x = a+b;
 y = (a+b)*c*d; }

if (secret)  
 { x = a*b;  
 y = x+c+d; }
else
 { x = a+b;
 y = x*c*d; }

if (secret)  
 { 𝛅(t1);  
 x = a*b;  
 y = x+c+d; }
else
 { 𝛅(t2);  
 x = a+b;
 y = x*c*d; }

if (secret)  
 { 𝛅(t1-t);  
 x = a*b;  
 y = x+c+d; }
else
 { 𝛅(t2-t);  
 x = a+b;
 y = x*c*d; }

t = max(t1, t2)

and
t1 = Kmult + Kvar

t2 = Kadd + Kvar

optim
isation

minimisation
paddingpadding

insertion

Preserving the constant-resource policy
requires to define some security-enhancing
program transformations

Constant-resource policy and compilation

Balancing all branches is not realistic

Use of an atomic annotation

• introduced by a previous static analysis

• allows for padding instructions

32

if (public) {
 { … }
else
 { … }
atomic {
 if (secret)  
 { … }
 else
 { … }
}
…

atomic {
 if (secret)  
 { … }
 else
 { … }
}

Conclusion

Reducing security to safety for

• expressing two policies to protect a program against timing attacks

• proving using Coq that the policies are preserved through
compilation

Follows previous uses of instrumented semantics

• CompCertSFI: a sandboxing transformation ensures that an
untrusted module cannot escape its dedicated isolated address
space

33

Perspectives

34

Constant-resource

Experimental validation

Allow memory accesses in the
atomic parts

Towards a more realistic language
with loops, functions, and
instructions with variable resource
consumption

Cryptographic constant-time

Extend CompCert with support for
vectorization instructions

Combine CT-CompCert with
verified C cryptographic programs

• VST, HACL*

Further reading

• G.Barthe, S.Blazy, R.Hutin, D.Pichardie. Secure compilation of Constant-
Resource Programs. CSF 2021.

• G.Barthe, S.Blazy, B.Grégoire, R.Hutin, V.Laporte, D.Pichardie, A.Trieu. Formal
Verification of a Constant-Time Preserving C Compiler. POPL 2020.

• S.Blazy, D.Pichardie, A.Trieu. Verifying Constant-Time Implementations by
Abstract Interpretation. Journal of Computer Security, 27(1), 2019.

• F.Besson, S.Blazy, A.Dang, T.Jensen, P.Wilke. Compiling Sandboxes:
Formally Verified Software Fault Isolation. ESOP 2019.

• G.Barthe, B. Grégoire, and V. Laporte. Secure Compilation of Side-Channel
Countermeasures: The Case of Cryptographic Constant-Time. CSF 2018.

35

Questions ?

36

